A thorough understanding of the genetic basis of rice grain traits is critical for the improvement of rice (Oryza sativa L.) varieties. In this study, we generated an F₂ population by crossing the large-grain japonica cultivar CW23 with Peiai 64 (PA64), an elite indica small-grain cultivar. Using QTL analysis, 17 QTLs for five grain traits were detected on four different chromosomes. Eight of the QTLs were newly-identified in this study. In particular, qGL3-1, a newly-identified grain length QTL with the highest LOD value and largest phenotypic variation, was fine-mapped to the 17 kb region of chromosome 3. A serine/threonine protein phosphatase gene encoding a repeat domain containing two Kelch motifs was identified as the unique candidate gene corresponding to this QTL. A comparison of PA64 and CW23 sequences revealed a single nucleotide substitution (C→A) at position 1092 in exon 10, resulting in replacement of Asp (D) in PA64 with Glu (E) in CW23 for the 364(th) amino acid. This variation is located at the D position of the conserved sequence motif AVLDT of the Kelch repeat. Genetic analysis of a near-isogenic line (NIL) for qGL3-1 revealed that the allele qGL3-1 from CW23 has an additive or partly dominant effect, and is suitable for use in molecular marker-assisted selection.
The majority of rapeseed cultivars shatter seeds upon maturity especially under hot-dry and windy conditions, reducing yield and gross margin return to growers. Here, we identified quantitative trait loci (QTL) for resistance to pod shatter in an unstructured diverse panel of 143 rapeseed accessions, and two structured populations derived from bi-parental doubled haploid (DH) and inter-mated (IF2) crosses derived from R1 (resistant to pod shattering) and R2 (prone to pod shattering) accessions. Genome-wide association analysis identified six significant QTL for resistance to pod shatter located on chromosomes A01, A06, A07, A09, C02, and C05. Two of the QTL, qSRI.A09 delimited with the SNP marker Bn-A09-p30171993 (A09) and qSRI.A06 delimited with the SNP marker Bn-A06-p115948 (A06) could be repeatedly detected across environments in a diversity panel, DH and IF2 populations, suggesting that at least two loci on chromosomes A06 and A09 were the main contributors to pod shatter resistance in Chinese germplasm. Significant SNP markers identified in this study especially those that appeared repeatedly across environments provide a cost-effective and an efficient method for introgression and pyramiding of favorable alleles for pod shatter resistance via marker-assisted selection in rapeseed improvement programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.