Background and Aims. Recent evidences reveal that epithelial to mesenchymal transition (EMT) exacerbates the process of intestinal fibrosis. Tumor necrosis factor-like ligand 1A (TL1A) is a member of the tumor necrosis family (TNF), which can take part in the development of colonic inflammation and fibrosis by regulating immune response or inflammatory factors. The purpose of this study was to elucidate the possible contribution of TL1A in onset and progression of intestinal inflammation and fibrosis through EMT. Methods. Colonic specimens were obtained from patients with inflammatory bowel disease (IBD) and control individuals. The expression levels of TL1A and EMT-related markers in intestinal tissues were evaluated. Furthermore, the human colorectal adenocarcinoma cell line, HT-29, was stimulated with TL1A, anti-TL1A antibody, or BMP-7 to assess EMT process. In addition, transgenic mice expressing high levels of TL1A in lymphoid cells were used to further investigate the mechanism of TL1A in intestinal fibrosis. Results. High levels of TL1A expression were detected in the intestinal specimens of patients with ulcerative colitis and Crohn’s disease and were negatively associated with the expression of an epithelial marker (E-cadherin), while it was positively associated with the expression of interstitial markers (FSP1 and α-SMA). Transgenic mice with high expression of TL1A were more sensitive to dextran sodium sulfate and exhibited severe intestinal inflammation and fibrosis. Additionally, the TGF-β1/Smad3 pathway may be involved in TL1A-induced EMT, and the expression of IL-13 and EMT-related transcriptional molecules (e.g., ZEB1 and Snail1) was increased in the intestinal specimens of the transgenic mice. Furthermore, TL1A-induced EMT can be influenced by anti-TL1A antibody or BMP-7 in vitro. Conclusions. TL1A participates in the formation and process of EMT in intestinal fibrosis. This new knowledge enables us to better understand the pathogenesis of intestinal fibrosis and identify new therapeutic targets for its treatment.
Nonalcoholic steatohepatitis (NASH) is a progressive, chronic liver disease worldwide which imposes a large economic burden on society. M1/M2 macrophage balance destruction and recruitment of mononuclear immune cells to the liver play critical roles in NASH. Several studies have shown that the expression of TNF-like ligand 1 aberrance (TL1A) increased in macrophages associated with many inflammatory diseases, for example, inflammatory bowel disease, primary biliary cholangitis, and liver fibrosis. One recent research showed that weight, abdominal adipose, and liver leptin, one of the critical fat cytokines, were reduced in TL1A knockout mice. However, the functional and molecular regulatory mechanisms of TL1A on macrophage polarization and recruitment in NASH have yet to be clarified. The authors found that high fructose high fat diet and methionine-choline deficiency diet induced the expression of TL1A in macrophages of liver tissue from murine NASH models. Myeloid-specific TL1A overexpressed mice showed exacerbated steatohepatitis with increased hepatic lipid accumulation, inflammation, liver injury, and apoptosis. M1 macrophages’ infiltration and the production of proinflammatory and chemotactic cytokines increased in liver of NASH mouse models with myeloid-specific TL1A overexpressed. Furthermore, this paper revealed that bone marrow-derived macrophages and Kupffer cells with overexpression of TL1A exacerbated the lipid accumulation and expression of proinflammatory factors in the murine primary hepatocytes after free fatty acid treatment in vitro. In conclusion, TL1A-mediated M1-type macrophage polarization and recruitment into the liver promoted steatohepatitis in murine NASH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.