Agriculture faces the challenge of feeding a growing population with limited or depleting fresh water resources. Advances in irrigation systems and technologies allow site-specific application of irrigation water within the field to improve water use efficiency or reduce water usage for sustainable crop production, especially in arid and semi-arid regions. This paper discusses recent development of variable-rate irrigation (VRI) technologies, data and information for VRI application, and impacts of VRI, including profitability using this technology, with a focus on agronomic factors in precision water management. The development in sprinkler systems enabled irrigation application with greater precision at the scale of individual nozzle control. Further research is required to evaluate VRI prescription maps integrating different soil and crop characteristics in different environments. On-farm trials and whole-field studies are needed to provide support information for practical VRI applications. Future research also needs to address the adjustment of the spatial distribution of prescription zones in response to temporal variability in soil water status and crop growing conditions, which can be evaluated by incorporating remote and proximal sensing data. Comprehensive decision support tools are required to help the user decide where to apply how much irrigation water at different crop growth stages to optimize water use and crop production based on the regional climate conditions and cropping systems.
Remote sensing can be a rapid, accurate, and simple method for assessing pest damage on plants. The objectives of this study were to identify spectral wavelengths sensitive to cotton aphid infestation. Then, the normalized difference spectral indices (NDSI) and ratio spectral indices (RSI) based on the leaf spectrum were obtained within 350–2500 nm, and their correlation with infestation were qualified. The results showed that leaf spectral reflectance decreased in the visible range (350–700 nm) and the near-infrared range (NIR, 700–1300 nm) as aphid damage severity increased, and significant differences were found in blue, green, red, NIR and short-wave infrared (SWIR) band regions between different grades of aphid damage severity. Decrease in Chlorophyll a (Chl a) pigment was more significant than that in Chlorophyll (Chl b) in the infested plants and the Chl a/b ratio showed a decreasing trend with increase in aphid damage severity. The sensitive spectral bands were mainly within NIR and SWIR ranges. The best spectral indices NDSI (R678, R1471) and RSI (R1975, R1904) were formulated with these sensitive spectral regions through reducing precise sampling method. These new indices along with 16 other stress related indices compiled from literature were further tested for their ability to detect aphid damage severity. The two indices in this study showed significantly higher coefficients of determination (R2 of 0.81 and 0.81, p < 0.01) and the least RMSE values (RMSE of 0.50 and 0.49), and hence have potential application in assessing aphid infestation severity in cotton.
Machine learning and computer vision technologies based on high-resolution imagery acquired using unmanned aerial systems (UAS) provide a potential for accurate and efficient high-throughput plant phenotyping. In this study, we developed a sorghum panicle detection and counting pipeline using UAS images based on an integration of image segmentation and a convolutional neural networks (CNN) model. A UAS with an RGB camera was used to acquire images (2.7 mm resolution) at 10-m height in a research field with 120 small plots. A set of 1,000 images were randomly selected, and a mask was developed for each by manually delineating sorghum panicles. These images and their corresponding masks were randomly divided into 10 training datasets, each with a different number of images and masks, ranging from 100 to 1,000 with an interval of 100. A U-Net CNN model was built using these training datasets. The sorghum panicles were detected and counted by a predicted mask through the algorithm. The algorithm was implemented using Python with the Tensorflow library for the deep learning procedure and the OpenCV library for the process of sorghum panicle counting. Results showed the accuracy had a general increasing trend with the number of training images. The algorithm performed the best with 1,000 training images, with an accuracy of 95.5% and a root mean square error (RMSE) of 2.5. The results indicate that the integration of image segmentation and the U-Net CNN model is an accurate and robust method for sorghum panicle counting and offers an opportunity for enhanced sorghum breeding efficiency and accurate yield estimation.
Abstract:The application of remotely sensed estimates of canopy minus air temperature (Tc-Ta) for detecting crop water stress can be limited in semi-arid regions, because of the lack of full ground cover (GC) at water-critical crop stages. Thus, soil background may restrict water stress interpretation by thermal remote sensing. For partial GC, the combination of plant canopy temperature and surrounding soil temperature in an image pixel is expressed as surface temperature (Ts). Soil brightness (SB) for an image scene varies with surface soil moisture. This study evaluates SB, GC and Ts-Ta and determines a fusion approach to assess crop water stress. The study was conducted (2007 and 2008) on a commercial scale, center pivot irrigated research site in the Texas High Plains. High-resolution aircraft-based imagery (red, near-infrared and thermal) was acquired on clear days. The GC and SB were derived using the Perpendicular Vegetation Index approach. The Ts-Ta was derived using an array of ground Ts sensors, thermal imagery and weather station air temperature. The Ts-Ta, GC and SB were fused using the hue, saturation, intensity method, respectively. Results showed that this method can be used to assess water OPEN ACCESS Remote Sens. 2014, 6 4026 stress in reference to the differential irrigation plots and corresponding yield without the use of additional energy balance calculation for water stress in partial GC conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.