Rice blast, caused by the fungal pathogen Magnaporthe grisea, is one of the most devastating diseases in rice worldwide. The dominant resistance gene, Pi-d2 [previously named Pi-d(t)2], present in the rice variety Digu, confers gene-for-gene resistance to the Chinese blast strain, ZB15. Pi-d2 was previously mapped close to the centromere of chromosome 6. In this study, the Pi-d2 gene was isolated by a map-based cloning strategy. Pi-d2 encodes a receptor-like kinase protein with a predicted extracellular domain of a bulb-type mannose specific binding lectin (B-lectin) and an intracellular serine-threonine kinase domain. Pi-d2 is a single-copy gene that is constitutively expressed in the rice variety Digu. Transgenic plants carrying the Pi-d2 transgene confer race-specific resistance to the M. grisea strain, ZB15. The Pi-d2 protein is plasma membrane localized. A single amino acid difference at position 441 of Pi-d2 distinguishes resistant and susceptible alleles of rice blast resistance gene Pi-d2. Because of its novel extracellular domain, Pi-d2 represents a new class of plant resistance genes.
SummaryRice tillering is an important agronomic trait for grain production. The HIGH-TILLERING DWARF1 (HTD1) gene encodes an ortholog of Arabidopsis MAX3. Complementation analyses for HTD1 confirm that the defect in HTD1 is responsible for both high-tillering and dwarf phenotypes in the htd1 mutant. The rescue of the Arabidopsis max3 mutant phenotype by the introduction of Pro 35S :HTD1 indicates HTD1 is a carotenoid cleavage dioxygenase that has the same function as MAX3 in synthesis of a carotenoid-derived signal molecule. The HTD1 gene is expressed in both shoot and root tissues. By evaluating Pro HTD1 :GUS expression, we found that the HTD1 gene is mainly expressed in vascular bundle tissues throughout the plant. Auxin induction of HTD1 expression suggests that auxin may regulate rice tillering partly through upregulation of HTD1 gene transcription. Restoration of dwarf phenotype after the removal of axillary buds indicates that the dwarfism of the htd1 mutant may be a consequence of excessive tiller production. In addition, the expression of HTD1, D3 and OsCCD8a in the htd1 and d3 mutants suggests a feedback mechanism may exist for the synthesis and perception of the carotenoid-derived signal in rice. Characterization of MAX genes in Arabidopsis, and identification of their orthologs in pea, petunia and rice indicates the existence of a conserved mechanism for shoot-branching regulation in both monocots and dicots.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.