The SRAP profile and physiological and biochemical parameters could act as appropriate biomarkers for the measurement of Cd contamination during rice production.
Drought is a common natural disaster in barley production, which restricts the growth and development of barley roots and caryopses seriously, thereby decreasing yield and debasing grain quality. However, mechanisms for how drought stress affects barley caryopses and roots development under drought stress are unclear. In this paper, Suluomai1 was treated with drought from flowering to caryopses mature stage. The morphological and structural changes in roots growth and caryopses development of barley were investigated. Drought stress increased root/shoot ratio and eventually led to the 20.16% reduction of ear weight and 7.75% reduction of 1,000-grain weight by affecting the biomass accumulation of roots and caryopses. The barley roots under drought had more lateral roots while the vessel number and volume of roots decreased. Meanwhile, drought stress accelerated the maturation of caryopses, resulting in a decrease in the accumulation of starch but a significant increase of protein accumulation in barley endosperm. There was a significantly positive correlation (0.76) between the area of root vessel and the relative area of protein in endosperm cells under normal condition and drought increased the correlation coefficient (0.81). Transcriptome analysis indicated that drought induced differential expressions of genes in caryopses were mainly involved in encoding storage proteins and protein synthesis pathways. In general, drought caused changes in the morphology and structure of barley roots, and the roots conveyed stress signals to caryopses, inducing differential expression of genes related to protein biosynthesis, ultimately leading to the increase in the accumulation of endosperm protein. The results not only deepen the study on drought mechanism of barley, but also provide theoretical basis for molecular breeding, high-yield cultivation and quality improvement in barley.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.