Land use and land cover (LULC) change analysis is a systematic technique that aids in the comprehension of physical and non-physical interaction with the natural habitat and the pursuit of environmental sustainability. Research regarding LULC’s spatiotemporal changing patterns and the simulation of future scenarios offers a complete view of present and future development possibilities. To simulate the spatiotemporal change transition potential and future LULC simulation, we utilized multi-temporal remotely sensed big data from 1990 to 2020 with a 10-year interval. Independent variables (DEM, slope, and distance from roads) and an integrated CA-ANN methodology within the MOLUSCE plugin of QGIS were utilized. The findings reveal that physical and socioeconomic driving variables have a substantial effect on the patterns of the terrain. In the last three decades, the study area had a significant rise in impervious surface from 10.48% to 26.91%, as well as a minor increase in water from 1.30% to 1.67%. As a result, forest cover decreased from 12.60% to 8.74%, green space decreased from 26.34% to 16.57%, and barren land decreased from 49.28% to 46.11%. Additionally, the predictions (2030–2050) support the increasing trend towards impervious surface at the expense of significant quantities of forest and green space.
Saliency detection has become an active topic in both computer vision and multimedia fields. In this paper, we propose a novel computational model for saliency detection by integrating the holistic centerdirectional map with the principal local color contrast (PLCC) map. In the proposed framework, perceptual directional patches are firstly detected based on discrete wavelet frame transform (DWFT) and sparsity criterion, then the center of the spatial distribution of the extracted directional patches are utilized to locate the salient object in an image. Meanwhile, we proposed an efficient local color contrast method, called principal local color contrast (PLCC), to compute the color contrast between the salient object and the image background, which is sufficient to highlight and separate salient objects from complex background while dramatically reduce the computational cost. Finally, by incorporating the complementary visual cues of the global center-directional map with the PLCC map, a final compounded saliency map can be generated. Extensive experiments performed on three publicly available image databases, verify that the proposed scheme is able to achieve satisfactory results compared to other stateof-the-art saliency-detection algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.