CONSPECTUS: Fighting cancer with the means of chemistry remains a tremendous challenge and defines a pressing societal need. Compounds based on synthetic organic dyes have long been recognized as vital tools for cancer diagnosis and therapy (theranostics). Fluorescence and photoacoustic imaging of cancer as well as cancer treatment protocols such as photodynamic and photothermal therapy are all photobased technologies that require chromophores. However, a serious drawback of most chromophoric molecules is photobleaching over the course of their use in biological environments, which severely compromises the desired theranostic effects. At this point, rylenecarboximide (RI) dyes with ultrahigh photostability hold enormous promise. RI stands for a homologous series of dyes consisting of an aromatic core and carboximide auxochromic groups. They possess high molar extinction coefficients and finely tunable photophysical properties. RIs such as perylenebiscarboxylic acid monoimide (PMI), perylenetetracarboxylic acid diimide (PDI), terrylenetetracarboxylic acid diimide (TDI), and quaterrylene tetracarboxylic acid diimide (QDI) have attracted great scientific attention as colorants, components of organic photovoltaics and organic field-effect transistors, as well as tools for biological applications. PDI has appeared as one of the most widely studied RI dyes for fluorescence bioimaging. Our recent breakthroughs including chemotherapy with PDI-based DNA intercalators and photothermal therapy guided by photoacoustic imaging using PDI, TDI, or QDI, define urgent needs for further scientific research and clinical translation. In this Account, we tackle the relationship between chemical structures and photophysical and pharmacologic properties of RIs aiming at new contrast and anticancer agents, which then lay the ground for further biomedical applications. First, we introduce the design concepts for RIs with a focus on their structure−property relationships. Chemical structure has an enormous impact on the fluorescent, chemotoxic, photodynamic, and photothermal performance of RIs. Next, based on the resulting performance criteria, we employ RIs for fluorescence and photoacoustic cancer imaging as well as cancer therapies. When carrying electron donating substituents, PDIs and PMIs possess high fluorescence quantum yield and red-shifted emission which qualifies them for use in cancer fluorescence imaging. Also, some fluorescent PDIs are combined with chemodrugs or developed into DNA intercalators for chemotherapy. PDI-based photosensitizers are prepared by "heavy atom" substitution, showing potential for photodynamic therapy. Further, photothermal agents using PDI, TDI, and QDI with near-infrared absorption and excellent photothermal conversion efficiency offer high promise in photothermal cancer therapy monitored by photoacoustic imaging. Finally, looking jointly at the outstanding properties of RIs and the demands of current biomedicine, we offer an outlook toward further modifications of RIs as a powerful and practical pla...
BACKGROUND The utilization efficiency of conventional insecticides is comparatively low in agricultural production, which leads to their excessive application and environmental pollution. Insecticide nanometerization by polymers and polymeric materials has advantages, particularly increased utilization efficiency and reduced insecticide application. RESULTS To increase the utilization efficiency of insecticides, a star polycation (SPc) was selected as a drug carrier that could be complexed with thiamethoxam through electrostatic interaction. Formation of the complex decreased the particle size of thiamethoxam from 575.77 to 116.16 nm in aqueous solution. Plant uptake of SPc‐delivered thiamethoxam was increased 1.69–1.84 times compared with thiamethoxam alone. Nano‐sized thiamethoxam/SPc complexes showed enhanced contact and stomach toxicity against green peach aphids. CONCLUSION SPc is a promising insecticide adjuvant for insecticide nanometerization, and is beneficial in improving insecticidal activity and decreasing the application amounts and application rates of conventional insecticides. © 2020 Society of Chemical Industry
Photodynamic therapy (PDT) exhibits great potential for cancer therapy, but still suffers from nonspecific photosensitivity and poor penetration of photosensitizer. Herein, a smart perylene monoimide‐based nanocluster capable of enzyme‐triggered disassembly is reported as an activatable and deeply penetrable photosensitizer. A novel carboxylesterase (CE)‐responsive tetrachloroperylene monoimide (P1) was synthesized and assembled with folate‐decorated albumins into a nanocluster (FHP) with a diameter of circa 100 nm. Once P1 is hydrolyzed by the tumor‐specific CE, FHP disassembles into ultrasmall nanoparticles (ca. 10 nm), facilitating the deep tumor penetration of FHP. Furthermore, such enzyme‐triggered disassembly of FHP leads to enhanced fluorescence intensity (ca. 8‐fold) and elevated singlet oxygen generation ability (ca. 4‐fold), enabling in situ near‐infrared fluorescence imaging and promoted PDT. FHP permits remarkable tumor inhibition in vivo with minimal side effects through imaging‐guided, activatable, and deep PDT. This work confirms that this cascaded multifunctional control through enzyme‐triggered molecular disassembly is an effective strategy for precise cancer theranostics.
Gaseous formaldehyde (FA), a common indoor pollutant, presents a serious threat to human health. As an efficient tool for FA detection, fluorescent probes exhibit the advantages of low cost, ease of use, facile operation, etc. However, previously developed FA fluorescent probes are mostly based on fluorophores with aggregation-caused quenching features and thus require dispersion in solvent to detect FA. In this study, a fluorescent probe (TPE-FA) based on an aggregation-induced emission (AIE) fluorophore (tetraphenylethylene) has been developed for facile detection of gaseous FA through a fluorescence "turn-on" response. TPE-FA reacts with FA through 2-aza-Cope sigmatropic rearrangement. Based on the AIE features of TPE-FA, we fabricated a portable solid sensor, FA test plate, by directly loading TPE-FA on high performance thin-layer chromatography silica gel plate. The FA test plate achieved sensitive, selective, and quantitative detection of gaseous FA. The detection limit (0.036 mg/m 3 ) of the FA test plate is lower than the air quality guideline value of gaseous FA (0.1 mg/m 3 ) recommended by WHO. As a solid sensor for gaseous FA, the FA test plate based on AIE molecule is portable, which enables safer and more convenient use and transport compared to solution-based sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.