To overcome the difficulties of time-varying disturbance, model mismatch, and frequent operation in the rudder/fin joint control system, an interference model predictive control (I-MPC) rudder/fin joint control system with sliding mode observer is proposed. Considering that the model mismatch problem occurs when the ship is sailing, the model mismatch and external disturbance are regarded as the total disturbance. A discrete 3-degree-of-freedom ship disturbance mathematical model is established. The rudder angle and fin angle are selected as the system inputs, then a sliding mode observer is designed to observe the time-varying disturbance and system output in real time. Different from traditional MPC and feedforward compensation, I-MPC will predict the output based on the disturbance observation value, and the control law is solved under rudder/fin angle and angular velocity constraints. Simulation results show that the proposed method improves the tracking performance and anti-disturbance performance of the rudder/fin system. The observer has high observation accuracy for constant, sinusoidal, and time-varying disturbances. Mechanism wear and energy loss caused by frequent operation are avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.