Carbon fiber nanoelectrodes (tip diameter = ca. 100 nm) have been first used to monitor real-time dopamine release from single living vesicles of single rat pheochromocytoma (PC12) cells. The experiments show that active and inactive release sites exist on the surface of cells, and the spatial distributions have been differentiated even in the same active release zone. It is first demonstrated that multiple vesicles can sequentially release dopamine at the same site of the cell surface, which possibly plays the main role in the dopamine release from PC12 cells.
Images of Human umbilical vein endothelial cells (HUVECs) have been obtained and the regulation of cell morphology changes after nitric oxide release has been recorded and discerned quantitatively for the first time using scanning electrochemical microscopy.
Capillary electrophoresis has become a widely useful analytical technology. Amperometric detection is extensively employed in capillary electrophoresis for its many inherent virtues, such as rapid response, remarkable sensitivity, and low cost of both detectors and instrumentations. Analysis of inorganic and small organic ions by capillary electrophoresis is an important research field. This review focuses on the recent developments of capillary electrophoresis coupled with amperometric detection for analysis of inorganic and small organic ions. Advancements in electrophoresis separation modes, amperometric detection modes, working electrodes, and applications of inorganic ions, amino acids, phenols, and amines are discussed.
van der Waals interaction (vdW) in both on-axis and off-axis attachments of 1D Ag nano-structures are investigated by molecular static calculations to understand the thermodynamics of 1D OA growth from an energy point of view.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.