Gloverin is one of the glycine-rich antimicrobial peptide exclusively found in Lepidoptera insects. It is generally activated through the innate immune system in insects. In this study, recombinant Gloverin2 from Bombyx mori (BmGlv2) was synthesized using a prokaryotic expression system. Circular dichroism spectroscopy showed that the recombinant BmGlv2 has random coil structure, which is relatively stable at the temperatures ranging from 15 to 82.5 °C. Antimicrobial activity analysis revealed that BmGlv2 significantly inhibited the growth of gram-negative bacteria, Escherichia coli JM109 and Pseudomonas putida, by disrupting cell integrity. Western blotting and immunofluorescence analyses suggested that BmGlv2 absorbed on the cell surface after incubation, which might be the first step in the antibacterial process. Our results also proved that the cell wall component lipopolysaccharides (LPS) induce a conformational change in BmGlv2 from a random coil to α-helix. Subsequently, α-helical BmGlv2 would recruit more BmGlv2 and form higher aggregation state. Collectively, these findings expand our understanding of antibacterial mechanism of BmGlv2.
An X-band inverse class-F power amplifier is realized by a 1-mm AlGaN/GaN high electron mobility transistor (HEMT). The intrinsic and parasitic components inside the transistor, especially output capacitor C ds , influence the harmonic impedance heavily at the X-band, so compensation design is used for meeting the harmonic condition of inverse class-F on the current source plane. Experiment results show that, in the continuous-wave mode, the power amplifier achieves 61.7% power added efficiency (PAE), which is 16.3% higher than the class-AB power amplifier realized by the same kind of HEMT. To the best of our knowledge, this is the first inverse class-F GaN internally-matched power amplifier, and the PAE is quite high at the X-band.
A 5-8 GHz internally matched Gallium Nitride (GaN) power amplifier (PA) with 100 W output power was realized in this letter. The theory of load line match was used and extended. Power contour was depicted and revised by the output capacitance of GaN High Electron Mobility Transistor (HEMT). Impedance was matched into the −1 dB power contour in a wide frequency band due to the ladder transmission line matching network and broadband power combiner. With the package size of 14.5 * 14.8 mm, the proposed power amplifier has the maximum output power of 102 W with 45.8% associate power added efficiency (PAE) at the frequency of 6.5 GHz, and output power over 85 W and PAE over 42.8% at the frequency band of 5-8 GHz.
Although potassium channelopathies have been linked to a wide range of neurological con- ditions, the underlying pathogenic mechanism is not always clear, and a systematic summary of clini- cal manifestation is absent. Several neurological disorders have been associated with alterations of calcium-activated potassium channels (KCa channels), such as loss- or gain-of-function mutations, post-transcriptional modification, etc. Here, we outlined the current understanding of the molecular and cellular properties of three subtypes of KCa channels, including big conductance KCa channels (BK), small conductance KCa channels (SK), and the intermediate conductance KCa channels (IK). Next, we comprehensively reviewed the loss- or gain-of-function mutations of each KCa channel and described the corresponding mutation sites in specific diseases to broaden the phenotypic-genotypic spectrum of KCa-related neurological disorders. Moreover, we reviewed the current pharmaceutical strategies targeting KCa channels in KCa-related neurological disorders to provide new directions for drug discovery in anti-seizure medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.