Catalytic combustion technology is
one of the effective methods
to remove VOCs such as toluene from industrial emissions. The decomposition
of an aromatic ring via catalyst oxygen vacancies is usually the rate-determining
step of toluene oxidation into CO2. Series of CeO2 probe models were synthesized with different ratios of surface-to-bulk
oxygen vacancies. Besides the devotion of the surface vacancies, a
part of the bulk vacancies promotes the redox property of CeO2 in toluene catalytic combustion: surface vacancies tend to
adsorb and activate gaseous O2 to form adsorbed oxygen
species, whereas bulk vacancies improve the mobility and activity
of lattice oxygen species via their transmission effect. Adsorbed
oxygen mainly participates in the chemical adsorption and partial
oxidation of toluene (mostly to phenolate). With the elevated temperatures,
lattice oxygen of the catalysts facilitates the decomposition of aromatic
rings and further improves the oxidation of toluene to CO2.
MOx/ABO3 is a promising catalyst for the high-efficiency removal of volatile organic compounds. However, this catalyst is limited on practical applications due to its complex synthesis procedure and high cost. In this work, the MnO2/LaMnO3 catalyst was prepared in situ using a facile one-step method for the first time, in which partial La cations were selectively removed from three dimensionally chain-like ordered macroporous (3DOM) LaMnO3 material. After selective removal, the obtained MnO2/LaMnO3 sample expressed an excellent catalytic performance on toluene oxidation. Toluene could be completely oxidized into CO2 and H2O at 290 °C over the MnO2/LaMnO3 catalyst with a toluene/oxygen molar ratio of 1/100 and a space velocity of 120 000 mL/(g h). In addition, the apparent activation energy value of MnO2/LaMnO3 was 57 kJ/mol, which was lower than those of other metal oxides catalysts. According to O2-TPD and XPS results, it is concluded that the high catalytic performance of MnO2/LaMnO3 was mainly associated with the large amount of oxygen species and the excellent lattice oxygen mobility. MnO2/LaMnO3 is a promising catalyst for the practical removal of volatile organic compounds due to its high efficiency, good stability, low cost, and convenient preparation.
Selective dissolution is a common corrosion process in dealloying in which an alloy is immersed in acid to remove the active element, leaving behind an inert constituent. We introduce this technique into the treatment of oxide catalysts. A three-dimensionally ordered macroporous LaMnO3 perovskite has been prepared and treated with diluted HNO3 to selectively remove La cations, acquiring a novel γ-MnO2-like material. LaMnO3 is not a satisfactory catalyst on CO oxidation. Upon the removal of La cations, the obtained sample showed a significantly higher CO oxidation catalytic activity (T50=89 °C) than the initial precursor LaMnO3 (T50=237 °C) and ordinary γ-MnO2 (T50=148 °C). A large surface area, a high degree of mesoporosity, excellent low-temperature reducibility, and especially improved surface oxygen species are deduced to be responsible for CO oxidation at lower temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.