The radiation fluence of high luminosity LHC (HL-LHC) is predicted up to 1 × 1016 1 MeV neq/cm2 in the ATLAS and CMS experiments for the pixel detectors at the innermost layers. The increased radiation leads to the degradation of the detector properties, such as increased leakage current and full depletion voltage, and reduced signals and charge collection efficiency, which means it is necessary to develop the radiation hard semiconductor devices for very high luminosity colliders. In our previous study about ultra-fast 3D-trench electrode silicon detectors, through induced transient current simulation with different minimum ionizing particle (MIP) hitting positions, the ultra-fast response times ranging from 30 ps to 140 ps were verified. In this work, the full depletion voltage, breakdown voltage, leakage current, capacitance, weighting field and MIP induced transient current (signal) of the detector after radiation at different fluences will be simulated and calculated with professional software, namely the finite-element Technology Computer-Aided Design (TCAD) software frameworks. From analysis of the simulation results, one can predict the performance of the detector in heavy radiation environment. The fabrication of pixel detectors will be carried out in CMOS process platform of IMECAS based on ultra-pure high resistivity (up to 104 ohm·cm) silicon material.
The theoretical basis of a hypothetical spherical electrode detector was investigated in our previous work. It was found that the proposed detector has very good electrical characteristics, such as greatly reduced full depletion voltage, small capacitance and ultra-fast collection time. However, due to the limitations of current technology, spherical electrode detectors cannot be made. Therefore, in order to use existing CMOS technology to realize the fabrication of the detector, a hemispherical electrode detector is proposed. In this work, 3D modeling and simulation including potential and electric field distribution and hole concentration distribution are carried out using the TCAD simulation tools. In addition, the electrical characteristics, such as I-V, C-V, induced current and charge collection efficiency (CCE) with different radiation fluences, are studied to predict the radiation hardness property of the device. Furthermore, a customized manufacturing method is proposed and simulated with the TCAD-SPROCESS simulation tool. The key is to reasonably set the aspect ratio of the deep trench in the multi-step repetitive process and optimize parameters such as the angle, energy, and dose of ion implantation to realize the connection of the heavily doped region of the near-hemispherical electrode. Finally, the electrical characteristics of the process simulation are compared with the device simulation results to verify its feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.