Systemic lupus erythematosus (SLE) is characterized by high-avidity IgG antinuclear antibodies (ANAs) that are almost certainly products of T cell–dependent immune responses. Whether critical amino acids in the third complementarity-determining region (CDR3) of the ANA originate from V(D)J recombination or somatic hypermutation (SHM) is not known. We studied a mouse model of SLE in which all somatic mutations within ANA V regions, including those in CDR3, could be unequivocally identified. Mutation reversion analyses revealed that ANA arose predominantly from nonautoreactive B cells that diversified immunoglobulin genes via SHM. The resolution afforded by this model allowed us to demonstrate that one ANA clone was generated by SHM after a VH gene replacement event. Mutations producing arginine substitutions were frequent and arose largely (66%) from base changes in just two codons: AGC and AGT. These codons are abundant in the repertoires of mouse and human V genes. Our findings reveal the predominant role of SHM in the development of ANA and underscore the importance of self-tolerance checkpoints at the postmutational stage of B cell differentiation.
Demyelination and axonal loss have been described as the histological hallmarks of inflammatory lesions of multiple sclerosis (MS) and are the pathological correlates of persistent disability. However, the immune mechanisms underlying axonal damage in MS remain unknown. Here, we report the use of single chain-variable domain fragments (scFv) from clonally expanded cerebrospinal fluid (CSF) B cells to show the role of an anti-axon immune response in the central nervous system (CNS) in MS. The cellular and subcellular distribution of the antigen(s) recognized by these CSF-derived clonal scFv antibodies (CSFC-scFv Abs) was studied by immunochemical staining of brain tissues obtained at autopsy from patients with MS. Immunochemistry showed specific binding of CSFC-scFv Abs to axons in acute MS lesions. The stained axons showed three major types of axonal pathological changes: 1) linear axons, axonal ovoid formation, and axonal transection were seen in the myelinated white matter adjacent to the lesion; 2) accumulation of axonal ovoid formations and Wallerian degeneration were seen at the border between demyelinated lesions and the adjacent white matter; and 3) Wallerian degeneration occurred at the center and edge of acute demyelinated lesions. These findings suggest a B cell axonal specific immune response in the CNS in MS.
Our laboratory investigates systemic autoimmune disease in the context of mouse models of systemic lupus erythematosus (SLE). SLE is associated with high titers of serum autoantibodies of the IgG class that are predominantly directed against nuclear antigens, with pathological manifestations that are considered by many to be characteristic of an immune-complex mediated disease. In this review, we focus on the known and potential roles of somatic mutagenesis in SLE. We will argue that antinuclear antibodies (ANA) arise predominantly from nonautoreactive B cells that are transformed into autoreactive cells by the process of somatic hypermutation (SHM), which is normally associated with affinity maturation during the germinal center reaction. We will also discuss the role of SHM in creating antigenic peptides in the V region of the B cell receptor (BCR) and its potential to open an avenue of unregulated T cell help to autoreactive B cells. Finally, we will end this review with new experimental evidence suggesting that spontaneous somatic mutagenesis of genes that regulate B cell survival and activation is a rate-limiting causative factor in the development of ANA.
The BCR V region has been implicated as a potential avenue of T cell help for autoreactive B cells in systemic lupus erythematosus. In principle, either germline-encoded or somatically generated sequences could function as targets of such help. Preceding studies have indicated that class II MHC-restricted T cells in normal mice attain a state tolerance to germline-encoded Ab diversity. In this study, we tested whether this tolerance is intact in systemic lupus erythematosus-prone (New Zealand Black × SWR)F1 mice (SNF1). Using a hybridoma sampling approach, we found that SNF1 T cells were tolerant to germline-encoded Ab sequences. Specifically, they were tolerant to germline-encoded sequences derived from a lupus anti-chromatin Ab that arose spontaneously in this strain. This was true both for diseased and prediseased mice. Thus, there does not appear to be a global defect in T cell tolerance to Ab V regions in this autoimmune-prone strain either before or during autoimmune disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.