Silicene, a two-dimensional (2D) honeycomb structure similar to graphene, has been successfully fabricated on an Ir(111) substrate. It is characterized as a (√7×√7) superstructure with respect to the substrate lattice, as revealed by low energy electron diffraction and scanning tunneling microscopy. Such a superstructure coincides with the (√3×√3) superlattice of silicene. First-principles calculations confirm that this is a (√3×√3)silicene/(√7×√7)Ir(111) configuration and that it has a buckled conformation. Importantly, the calculated electron localization function shows that the silicon adlayer on the Ir(111) substrate has 2D continuity. This work provides a method to fabricate high-quality silicene and an explanation for the formation of the buckled silicene sheet.
Significant progress has been made both in experimentation and in theoretical modeling of scanning probe microscopy. The theoretical models used to analyze and interpret experimental scanning probe microscope (SPM) images and spectroscopic data now provide information not only about the surface, but also the probe tip and physical changes occurring during the scanning process. The aim of this review is to discuss and compare the present status of computational modeling of two of the most popular SPM methods-scanning tunneling microscopy and scanning force microscopy-in conjunction with their applications to studies of surface structure and properties with atomic resolution. In the context of these atomic-scale applications, for the scanning force microscope (SFM), this review focuses primarily on recent noncontact SFM (NC-SFM) results. After a brief introduction to the experimental techniques and the main factors determining image formation, the authors consider the theoretical models developed for the scanning tunneling microscope (STM) and the SFM. Both techniques are treated from the same general perspective of a sharp tip interacting with the surface-the only difference being that the control parameter in the STM is the tunneling current and in the SFM it is the force. The existing methods for calculating STM and SFM images are described and illustrated using numerous examples, primarily from the authors' own simulations, but also from the literature. Theoretical and practical aspects of the techniques applied in STM and SFM modeling are compared. Finally, the authors discuss modeling as it relates to SPM applications in studying surface properties, such as adsorption, point defects, spin manipulation, and phonon excitation. CONTENTS
Oxygen vacancies on metal oxide surfaces have long been thought to play a key role in the surface chemistry. Such processes have been directly visualized in the case of the model photocatalyst surface TiO 2 ð110Þ in reactions with water and molecular oxygen. These vacancies have been assumed to be neutral in calculations of the surface properties. However, by comparing experimental and simulated scanning tunneling microscopy images and spectra, we show that oxygen vacancies act as trapping centers and are negatively charged. We demonstrate that charging the defect significantly affects the reactivity by following the reaction of molecular oxygen with surface hydroxyl formed by water dissociation at the vacancies. Calculations with electronically charged hydroxyl favor a condensation reaction forming water and surface oxygen adatoms, in line with experimental observations. This contrasts with simulations using neutral hydroxyl where hydrogen peroxide is found to be the most stable product.The rutile TiO 2 ð110Þ surface, which we use as a model photocatalytic system here, is displayed as a ball model in Fig. 1A where the reduction of one oxygen atom of O 2 ðgÞ to one bridging oxide species (O 2− b ) is accomplished by oxidation of the two Ti 3þ sites associated with O b -vac to Ti 4þ (3), on the basis of a purely ionic model. (Formal charges are written in reactions 1 and 2 to highlight the redox processes involved.)The interaction of O 2 with OH b , on the other hand, is still a matter of controversy. Following the reaction of these species at temperatures ≤240 K, water is seen to desorb at ∼310 K in temperature programmed desorption (TPD) spectra (3, 4). Henderson et al. (3) concluded that this water evolution is a consequence of the formation of oxygen adatoms (O ad ) at the surface as follows:where the two Ti 3þ species provide the two electrons necessary to reduce one oxygen atom of O 2 ðgÞ to H 2 OðgÞ (3). In stark contrast to the TPD results, previous calculations find H 2 O 2 to be by far the most stable product (5). Moreover, on the basis of these calculations, water desorption is not expected up to the highest temperature computed, 350 K (5). This discrepancy provided the initial motivation for the present work. Results and DiscussionWe use STM to provide an additional experimental test of the picture that has emerged thus far. Fig. 1B shows a surface containing both O b -vac and OH b , alongside the same surface in Fig. 1C after it was exposed to 90 Langmuirs (L) O 2 at 300 K (1 L ¼ 1.33 × 10 −6 mbar · s, 1 mbar ¼ 100 Pa). A number of small, bright spots can be seen on the Ti 5c sites (bright rows) in the latter image. The histogram of the height distribution of these bright spots, shown in Fig. 1D, indicates that these bright spots are almost entirely due to one final product.It should be noted that at lower O 2 exposures we see a number of different types of species on Ti 5c rows that are likely to arise from terminal hydroxyls (OH t ) and other metastable species such as O 2 H. These latter results ...
Electrical transport through molecules has been much studied since it was proposed that individual molecules might behave like basic electronic devices, and intriguing single-molecule electronic effects have been demonstrated. But because transport properties are sensitive to structural variations on the atomic scale, further progress calls for detailed knowledge of how the functional properties of molecules depend on structural features. The characterization of two-terminal structures has become increasingly robust and reproducible, and for some systems detailed structural characterization of molecules on electrodes or insulators is available. Here we present scanning tunnelling microscopy observations and classical electrostatic and quantum mechanical modelling results that show that the electrostatic field emanating from a fixed point charge regulates the conductivity of nearby substrate-bound molecules. We find that the onset of molecular conduction is shifted by changing the charge state of a silicon surface atom, or by varying the spatial relationship between the molecule and that charged centre. Because the shifting results in conductivity changes of substantial magnitude, these effects are easily observed at room temperature.
Molecule-based functional devices on surfaces may take advantage of bistable molecular switches. The conformational dynamics and efficiency of switches are radically different on surfaces compared to the liquid phase. We present a design of molecular layers which enables bistable switching on a surface and, for the first time, demonstrate control of a single switch in a dense and ordered array at the spatial limit. Up and down motion of a central Sn ion through the frame of a phthalocyanine molecule is achieved via resonant electron or hole injection into molecular orbitals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.