Background. Compared to high-flux dialysis membranes, novel medium cut-off (MCO) membranes show greater permeability for larger middle molecules. Methods. In two prospective, open-label, controlled, randomized, crossover pilot studies, 39 prevalent hemodialysis (HD) patients were studied in four dialysis treatments as follows: study 1, three MCO prototype dialyzers (AA, BB and CC with increasing permeability) and one high-flux dialyzer in HD; and study 2, two MCO prototype dialyzers (AA and BB) in HD and high-flux dialyzers in HD and hemodiafiltration (HDF). Primary outcome was lambda free light chain (λFLC) overall clearance. Secondary outcomes included overall clearances and pre-to-post-reduction ratios of middle and small molecules, and safety of MCO HD treatments. Results. MCO HD provided greater λFLC overall clearance [least square mean (standard error)] as follows: study 1: MCO AA 8.5 (0.54), MCO BB 11.3 (0.51), MCO CC 15.0 (0.53) versus high-flux HD 3.6 (0.51) mL/min; study 2: MCO AA 10.0 (0.58), MCO BB 12.5 (0.57) versus high-flux HD 4.4 (0.57) and HDF 6.2 (0.58) mL/min. Differences between MCO and high-flux dialyzers were consistently significant in mixed model analysis (each P < 0.001). Reduction ratios of λFLC were greater for MCO. Clearances of α1-microglobulin, complement factor D, kappa FLC (κFLC) and myoglobin were generally greater with MCO than with high-flux HD and similar to or greater than clearances with HDF. Albumin loss was moderate with MCO, but greater than with high-flux HD and HDF. Conclusions. MCO HD removes a wide range of middle molecules more effectively than high-flux HD and even exceeds the performance of high-volume HDF for large solutes, particularly λFLC.
Background and objectivesExpanded hemodialysis therapy enabled by medium cut-off membranes may promote greater clearance of larger middle molecules that comprise putative uremic solutes than conventional high-flux dialysis. This randomized trial evaluated the efficacy and safety of hemodialysis treatment with a medium cut-off dialyzer.Design, setting, participants, & measurementsClinically stable patients on maintenance hemodialysis were randomized to receive dialysis with either a medium cut-off dialyzer (Theranova 400) or a high-flux dialyzer (Elisio-17H) over 24 weeks of treatment. The primary safety end point was the predialysis serum albumin level after 24 weeks of treatment. The primary efficacy end point was the reduction ratio of free λ light chains at 24 weeks of treatment.ResultsAmong 172 patients on maintenance hemodialysis, mean age was 59±13 years, 61% were men, 40% were Black, and mean dialysis vintage was 5±4 years. Of the 86 patients randomized to each dialyzer, 65 completed the trial in each group. The reduction ratio for the removal of free λ light chains was significantly higher in the Theranova 400 group compared with the Elisio-17H group after 4 weeks (39% versus 20%) and 24 weeks (33% versus 17%; both P<0.001). Among secondary end points, the Theranova 400 group demonstrated significantly larger reduction ratios at 4 and 24 weeks for complement factor D, free κ light chains, TNFα, and β2-microglobulin (P<0.001 for all), but not for IL-6. Predialysis serum albumin levels were similar between groups after 24 weeks (4 g/dl with the Theranova 400 and 4.1 g/dl with the Elisio-17H), consistent with noninferiority of the Theranova 400 dialyzer in maintaining predialysis serum albumin levels after 24 weeks of treatment.ConclusionsHemodialysis therapy with the Theranova 400 dialyzer provides superior removal of larger middle molecules, as exemplified by free λ light chains, compared with a similar size high-flux dialyzer, while maintaining serum albumin level.Clinical Trial registry name and registration numberA Multi-Center, Prospective, Randomized, Controlled, Open-Label, Parallel Study to Evaluate the Safety and Efficacy of the Theranova 400 Dialyzer in End Stage Renal Disease (ESRD) Patients, NCT03257410.
On the basis of previously described X-ray studies of an enzyme/aza-dipeptide complex,8 aza-dipeptide analogues carrying N-(bis-aryl-methyl) substituents on the (hydroxethyl)hydrazine moiety have been designed and synthesized as HIV-1 protease inhibitors. By using either equally (12) or orthogonally (13) protected dipeptide isosteres, symmetrically and asymmetrically acylated aza-dipeptides can be synthesized. This approach led to the discovery of very potent inhibitors with antiviral activities (ED50) in the subnanomolar range. Acylation of the (hydroxethyl)hydrazine dipeptide isostere with the L-tert-leucine derivative 29 increased the oral bioavailability significantly when compared to the corresponding L-valine or L-isoleucine derivatives. The bis(L-tert-leucine) derivatives CGP 75355, CGP 73547, CGP 75136, and CGP 75176 combine excellent antiviral activity with high blood concentration after oral administration. Furthermore, they show no cross-resistance with saquinavir-resistant strains and maintain activity against indinavir-resistant ones. Consequently they qualify for further profiling as potential clinical candidates.
High-flux dialysis reduces the plasma concentration of fluorescent AGE compounds, i.e. pentosidine, but the Amadori product fructoselysine is not removed, indicating that this compound is protein associated.
Abstract. A number of bacterial cytokine-inducing substances (CIS) such as lipopolysaccharides (LPS) and exotoxins have been detected in dialysate and may contribute to inflammation in hemodialysis patients. Short DNA fragments, oligodeoxynucleotides (ODN) of 6 to 20 nucleotides, are able to bind to Toll-like receptors and are stimulatory on immune cells. ODN induce natural killer cell activity and induce IFN-␥, TNF-␣, and IL-6 from mononuclear cells. The presence of ODN in dialysate samples and bacterial cultures was investigated. ODN were extracted from fluids by adsorption to reverse-phase columns. ODN were detected in 18 of 20 investigated dialysate samples, in eight of 10 reverse-osmosis water samples, and in all cultures from various bacterial strains. The presence of bacterial DNA in dialysate was confirmed by PCR specific for bacterial tRNA gene sequences. Saline for intravenous use contained 0.02 Ϯ 0.01 g/ml DNA, dialysate samples contained 0.28 Ϯ 0.02 g/ml, and Pseudomonas cultures contained 1.0 Ϯ 0.03 g/ml DNA. ODN from bacterial cultures were only partially removed by ultrafiltration and were able to diffuse through regular high-flux dialyzer membranes. Synthetic cytosine-guanosine dinucleotide-containing ODN were able to induce IL-6 in human mononuclear cells. It is concluded that short bacterial-derived DNA fragments are present in clinically used fluids, e.g., dialysate. These fragments are of sufficient small size to pass through dialyzer membranes. Bacterial DNA fragments may be an overlooked factor contributing to inflammation in hemodialysis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.