Socket preservation using either NCHA or DBBM in combination with collagen membrane, results in similar, limited horizontal ridge width alterations following tooth extraction.
In tooth development matrix metalloproteinases (MMPs) are under the control of several regulatory mechanisms including the upregulation of expression by inducers and downregulation by inhibitors. The aim of the present study was to monitor the occurrence and distribution pattern of the extracellular matrix metalloproteinase inducer (EMMPRIN), the metalloproteinases MMP-2 and MT1-MMP and caveolin-1 during the cap and bell stage of rat molar tooth germs by means of immunocytochemistry. Strong EMMPRIN immunoreactivity was detected on the cell membranes of ameloblasts and cells of the stratum intermedium in the bell stage of the enamel organ. Differentiating odontoblasts exhibited intense EMMPRIN immunoreactivity, especially at their distal ends. Caveolin-1 immunoreactivity was evident in cells of the internal enamel epithelium and in ameloblasts. Double immunofluorescence studies revealed a focal co-localization between caveolin-1 and EMMPRIN in ameloblastic cells. Finally, western blotting experiments demonstrated the expression of EMMPRIN and caveolin-1 in dental epithelial cells (HAT-7 cells). A substantial part of EMMPRIN was detected in the detergent-insoluble caveolin-1-containing low-density raft membrane fraction of HAT-7 cells suggesting a partial localization within lipid rafts. The differentiation-dependent co-expression of MMPs with EMMPRIN in the enamel organ and in odontoblasts indicates that EMMPRIN takes part in the induction of proteolytic enzymes in the rat tooth germ. The localization of EMMPRIN in membrane rafts provides a basis for further investigations on the role of caveolin-1 in EMMPRIN-mediated signal transduction cascades in ameloblasts.
Our results indicate that IL-1 and more particularly TNFalpha are important for the induction and the further process of mechanically induced root resorption in the rat.
Purpose: The purpose of this study was to correlate expression of CD44v5 in osteoarthritic synovium, cartilage, and synovial fluid with radiographical, histomorphological, and biochemical data.Methods: Cartilage and synovia specimens of 27 patients with osteoarthritis were histomorphologically assessed according to Mankin and Pelletier, respectively. Extended weight-bearing antero-posterior radiographs were evaluated according to Kellgren and Ahlback. Expression of membrane-bound CD44v5 was analyzed by immunohistochemistry and levels of soluble CD44v5 were determined by ELISA.Results: Expression of CD44v5 in cartilage and synovia was detected in 67% and 59% of the patients, respectively. Immunohistochemical findings in cartilage correlated significantly with structural cartilage changes (p < 0.001). whereas no correlation was found between expression in synovia and inflammatory synovial changes. Additionally, no relationship was evident between CD44v5 expression and radiographical data, but expression in cartilage and synovium was significantly correlated with each other 0, < 0.04). Surprisingly, expression of CD44v5 in both cartilage and synovia was negatively correlated with synovial fluid levels of TNFg (p < 0.03 and p < 0.02, respectively), and no association was evident with levels of IL-lP.Conclusions: The data demonstrate expression of CD44v5 in osteoarthritic cartilage and synovia, probably independent of joint inflammation. But more importantly, expression of this receptor variant in cartilage seems to be strongly related to the degree of cartilage destruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.