If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NO
x
) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NO
x
emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.
A small number of nations control the vast majority of the world's coal reserves. The geologically available amounts of coal are vast, but geological availability is not enough to ensure future production since economics and restrictions also play an important role. Historical trends in reserve and resource assessments can provide some insight about future coal supply and provide reasonable limits for modelling. This study uses a logistic model to create long-term outlooks for global coal production. A global peak in coal production can be expected between 2020 and 2050, depending on estimates of recoverable volumes. This is also compared with other forecasts. The overall conclusion is that the global coal production could reach a maximum level much sooner than most observers expect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.