The Anthropocene has witnessed catastrophic amphibian declines across the globe.A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions.Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term. K E Y W O R D Samphibians, conservation biology, conservation genetics, habitat degradation, host parasite interactions, natural selection and contemporary evolution
We developed a procedure for estimating competitive fitness by using Caenorhabditis elegans as a model organism and a Convolutional Neural Network (CNN) as a tool. Competitive fitness is usually the most informative fitness measure, and competitive fitness assays often rely on green fluorescent protein (GFP) marker strains. CNNs are a class of deep learning neural networks, which are well suited for image analysis and object classification. Our model analyses involved image classification of nematodes as wild-type vs. GFP-expressing, and counted both categories. The performance was analyzed with (i) precision and recall parameters, and (ii) comparison of the wild-type frequency calculated from the model against that obtained by visual scoring of the same images. The average precision and recall varied from 0.79 to 0.87 and from 0.84 to 0.92, respectively, depending on worm density in the images. Compared with manual counting, the model decreased counting time at least 20-fold while preventing human errors. Given the rapid development in the field of CNN, the model, which is fully available on GitHub, can be further optimized and adapted for other image-based uses.
Sexual selection may increase population‐level fitness by facilitating the removal of deleterious mutations with pleiotropic effects on competition for fertilizations as well as other fitness components in both sexes. Under inbreeding, this could promote purging selection, that is the removal of deleterious recessive alleles exposed in homozygotes via matings between closely related individuals. Here, in two independent experiments, we found no evidence for short‐term purging of the inbreeding load from severely bottlenecked populations of red flour beetles, Tribolium castaneum. We hypothesize that sexual selection may have dual effects on purging, corresponding to good‐genes versus compatible‐genes mechanisms. Whereas the former should facilitate the removal of inbreeding load from bottlenecked populations, the latter may actually hamper this process while simultaneously limiting inbreeding depression by preventing the expression of deleterious recessives.
Radical shifts in reproductive systems result in radical changes in selective pressures acting on reproductive traits. Nematode Caenorhabditis elegans constitutes one of rare model systems where such shifts can be experimentally induced, providing an opportunity for studying the evolution of reproductive phenotypes in real time. Evolutionary history of predominantly selfing reproduction in has led to degeneration of traits involved outcrossing, making it inefficient. Here, we introduced obligatory outcrossing into isogenic lines of C. elegans and allowed replicate populations to evolve under the new reproductive system. We predicted that they should evolve higher outcrossing efficiency, leading to increased fitness relative to unevolved ancestors. To test this prediction, we assayed fitness of both ancestral and evolved outcrossing populations. To control for the potentially confounding effect of adaptation to laboratory conditions, we also assayed populations with wild-type (selfing) reproductive system. In five experimental blocks, we measured competitive fitness of 12 evolved populations (6 outcrossing, 6 selfing) after ca. 95 generations of evolution, along with their respective ancestors. On average, we found that fitness increased by 0.72 SD (± 0.3 CI) in outcrossing and by 0.52 (± 0.35 CI) in selfing populations, suggesting further adaptation to laboratory conditions in both types. Contrary to predictions, fitness increase was not significantly higher in outcrossing populations, suggesting no detectable adaptation to the changed reproductive system. Importantly, the results for individual populations varied strongly between experimental blocks, in some cases even differing in effect direction. This emphasises the importance of experimental replication in avoiding reporting false findings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.