Diatoms have an ability that is unique among the unicellular photoautotrophic organisms to synthesize an intricately ornamented siliceous (biosilica) exoskeleton with an ordered, hierarchical, three-dimensional structure on a micro- to nanoscale. The unique morphological, structural, mechanical, transport, photonic, and optoelectronic properties of diatomaceous biosilica make it a desirable material for modern technologies. This review presents a summary and discussion of published research on the metabolic insertion of chemical elements with specific functional activity into diatomaceous biosilica. Included in the review is research on innovation in methods of synthesis of a new generation of functional siliceous materials, where the synthesis process is “outsourced” to intelligent microorganisms, referred to here as microtechnologists, by providing them with appropriate conditions and reagents.
Currently, scientists are still looking for new polymeric materials characterized by improved mechanical, thermal as well as dielectric properties. Moreover, it should be stressed that new composites should be environmentally friendly. For this reason, the aim of this work is to establish the influence of natural fillers in the form of diatomaceous biosilica (B) and talc (T) on the properties of dielectric elastomer (DE)-based composites. The dielectric elastomer-based materials have been tested taking into account their morphology, thermal and mechanical properties. Moreover, the dielectric constant of the obtained materials was evaluated. Obtained results revealed that the presence of both diatomaceous biosilica and talc significantly increases dielectric properties while having no significant effect on the mechanical properties of the obtained composites. It should be stressed that the performed analyses constitute a valuable source of knowledge on the effective modification of the thermal and dielectric properties of newly obtained materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.