Visfatin is an adipokine with nicotinamide phosphoribosyltransferase (NAMPT) activity, the concentration of which is higher in ascitic fluid than in serum, and is associated with ovarian cancer peritoneal dissemination. Furthermore, potentially important effects of visfatin on glucose metabolism have been previously reported. However, the mechanism underlying the effects of visfatin on ovarian cancer cell invasion, and whether this involves altered glucose metabolism, has not been elucidated. Here we tested the hypothesis that visfatin, which can reprogram cancer metabolism, promotes invasion by ovarian cancer spheroids. Visfatin increased glucose transporter (GLUT)1 expression and glucose uptake in adult granulosa cell tumor-derived spheroid cells (KGN), and also increased the activities of hexokinase 2 and lactate dehydrogenase. We showed a visfatin-induced increase in glycolysis in KGN cells. Moreover, visfatin increased the potential invasiveness of KGN spheroid cells by upregulating MMP2 (matrix metalloproteinase 2) and downregulating CLDN3 and CLDN4 (claudin 3 and 4) gene expression. Interestingly, an inhibitor of GLUT1 (STF-31) and lactate dehydrogenase (LDHA) abolished the stimulatory effect of visfatin on the potential invasiveness of KGN cells. More importantly, silencing expression of the NAMPT gene in KGN cells demonstrated its important effect on glycolysis and invasiveness in adult granulosa cell tumor cells. In summary, visfatin appears to increase adult granulosa cell tumor invasiveness through effects on glucose metabolism, and to be an important regulator of glucose metabolism in these cells
Purpose Ovarian cancer is characterized by recurrent peritoneal and distant metastasis. To survive in a non-adherent state, floating ovarian cancer spheroids develop mechanisms to resist anoikis. Moreover, ascitic fluid from ovarian cancer patients contains high levels of visfatin with anti-apoptotic properties. However, the mechanism by which visfatin induces anoikis resistance in ovarian cancer spheroids remains unknown. Here, we aimed to assess wheather visfatin which possess anti-apoptotic properties can induce resistance of anoikis in ovarian cancer spheroids. Methods Visfatin synthesis were examined using a commercial human visfatin ELISA Kit. Spheroid were exposed to visfatin and cell viability and caspase 3/7 activity were measured using CellTiter-Glo 3D cell viability assay and Caspase-Glo® 3/7 Assay System. mRNA and protein expression were analyzed by Real-time PCR and Western Blot analysis, respectively. Analysis of mitochondrial activity was estimated by JC-1 staining. Results First, our results suggested higher expression and secretion of visfatin by epithelial than by granulosa ovarian cells, and in non-cancer tissues versus cancer tissues. Interestingly, visfatin increased the proliferation/apoptosis ratio in ovarian cancer spheroids. Specifically, both the intrinsic and extrinsic pathways of anoikis were regulated by visfatin. Moreover, the effect of the visfatin inhibitor (FK866) was opposite to that of visfatin. Furthermore, both NAMPT and FK866 affected mitochondrial activity in ovarian cancer cells. Conclusion In conclusion, visfatin acts as an anti-apoptotic factor by regulating mitochondrial activity, leading to anoikis resistance in ovarian cancer spheroids. The finding suggest visfatin as a potential novel therapeutic target for the treatment of ovarian carcinoma with peritoneal dissemination.
The destruction of granulosa cells (GCs), the main functional cell type in the ovary, prevents steroid hormone production, which in turn may damage oocytes, resulting in ovarian failure. The accumulation of a number of persistent organic pollutants (POPs) in the ovarian follicular fluid (FF) has been documented, which raises serious questions regarding their impact on female fertility. Aims. We aimed to determine whether a mixture of POPs reflecting the profile found in FF influences mouse GCs or oocyte function and viability. Methods. A mixture of POPs, comprising perfluorooctanoate, perfluorooctane sulfonate, 2,2-dichlorodiphenyldichloroethylene, polychlorinated biphenyl 153, and hexachlorobenzene, was used. In addition to using the exact concentration of POPs previously measured in human FF, we tested two other mixtures, one with10-fold lower and another with 10-fold higher concentrations of each POP. Key results. Steroidogenesis was disrupted in GCs by the POP mixture, as demonstrated by lower oestradiol and progesterone secretion and greater lipid droplet accumulation. Furthermore, the POP mixture reduced GC viability and increased apoptosis, assessed using caspase-3 activity. The POP mixture significantly increased the number of oocytes that successfully progressed to the second meiotic metaphase and the oocyte reactive oxygen species (ROS) concentration. Conclusions. Thus, a mixture of POPs that are typically present in human FF has detrimental effects on ovarian function: it reduces the viability of GCs, and increases the oocyte concentrations of ROS. Implications. These results indicate that chronic exposure to POPs adversely affects female reproductive health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.