The isolated protein-polysaccharide fraction (AAF) from the coelomic fluid of Dendrobaena veneta earthworm shows effective activity against Candida albicans yeast. Fungal cells of the clinical strain after incubation with the active fraction were characterized by disturbed cell division and different morphological forms due to the inability to separate the cells from each other. Staining of the cells with acridine orange revealed a change in the pH of the AAF-treated cells. It was observed that, after the AAF treatment, the mitochondrial DNA migrated towards the nuclear DNA, whereupon both merged into a single nuclear structure, which preceded the apoptotic process. Cells with a large nucleus were imaged with the scanning electron cryomicroscopy (Cryo-SEM) technique, while enlarged mitochondria and the degeneration of cell structures were shown by transmission electron microscopy (TEM). The loss of the correct cell shape and cell wall integrity was visualized by both the TEM and SEM techniques. Mass spectrometry and relative quantitative SWATH MS analysis were used to determine the reaction of the C. albicans proteome to the components of the AAF fraction. AAF was observed to influence the expression of mitochondrial and oxidative stress proteins. The oxidative stress in C. albicans cells caused by the action of AAF was demonstrated by fluorescence microscopy, proteomic methods, and XPS spectroscopy. The secondary structure of AAF proteins was characterized by Raman spectroscopy. Analysis of the elemental composition of AAF confirmed the homogeneity of the preparation. The observed action of AAF, which targets not only the cell wall but also the mitochondria, makes the preparation a potential antifungal drug killing the cells of the C. albicans pathogen through apoptosis.
The polysaccharide-protein complex (PPC) isolated from metabolites of gut bacteria Raoultella ornithinolytica from Dendrobaena veneta earthworms exhibits activity against Candida albicans, in breast ductal carcinoma (line T47D) and in the endometrioid ovarian cancer line (TOV-112D) in vitro. The action against C. albicans was analyzed using light, SEM, TEM, and AFM microscopes. The changes observed indicated two directions of the action of the complex, that is, disturbance of metabolic activity and cell wall damage. The PPC is an adhesion-promoting complex inducing death of C. albicans cells by necrosis. Owing to its significant effect on C. albicans, the complex is a promising source of antifungal compounds. The PPC showed a minimal cytotoxic effect against human skin fibroblasts; however, the cytotoxicity against the T47D line was determined at 20% and 15% against the TOV-112D line. The action of the PPC against the T47D line exerted a cytopathic effect, whereas in the TOV-112D line, it caused a reduction in the cell number. The PPC induced death of tumor cells by apoptosis and necrosis. In view of the negligible cytotoxicity on fibroblasts, the PPC will be subjected to chemical modifications to increase its antitumor activity for prospective medical applications.
The results show the morphological analyses and spectroscopic studies of snow and glacier algae and their parasitic fungi in Svalbard (High Arctic). Fixed algal cells of two species, Sanguina nivaloides and Ancylonema nordenskioeldii, were imaged using light microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). Fluorescence microscopy using Calcofluor white stain supported the observations of parasitic fungi on the algal cells. Images in brightfield microscopy showed chytrid-like fungi penetrating the cells of both algal species. Parasites were found to colonize the cells of A. nordenskioeldii and hypnozygotes of S. nivaloides, while no fungi infected the cyst stages of S. nivaloides. The autofluorescence analysis revealed the ability of S. nivaloides to glow when excited with different wavelengths, while A. nordenskioeldii did not fluoresce. The hypnozygotes of S. nivaloides emitted brighter fluorescence than the cysts, and the most intense luminosity was observed in the UV range. The Fourier-transform infrared spectroscopy (FTIR) and energy-dispersive X-ray spectroscopy (EDS) spectroscopic analysis showed differences in the chemical composition between samples collected from three different sites. Samples dominated by cyst cells were characterized by the presence of an abundant polysaccharide envelope.
The protein–polysaccharide fraction (AAF) isolated from the coelomic fluid of the earthworm Dendrobaena veneta destroys C. albicans cells by changing their morphology, disrupting cell division, and leading to cell death. Morphological changes in C. albicans cells induced by treatment with AAF were documented using DIC, SEM, and AFM. Congo Red staining showed that the fungal wall structure was changed after incubation with AAF. The effect on C. albicans cell walls was shown by AFM analysis of the surface roughness of fungal cell walls and changes in the wall thickness were visualized using Cryo-SEM. The FTIR analysis of C. albicans cells incubated with AAF indicated attachment of protein or peptide compounds to the fungal walls. The intact LC–ESI–MS analysis allowed accurate determination of the masses of molecules present in AAF. As shown by the chromatographic study, the fraction does not cross biological membranes. The Cryo-TEM analysis of AAF demonstrated the ability of smaller subunits to combine into larger agglomerates. AAF is thermally stable, which was confirmed by Raman spectroscopy. AAF can be considered as a potential antifungal antibiotic with activity against clinical C. albicans strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.