Poly(N-isopropylacrylamide) (PNIPAM) microgel is a smart polymer that shows a volume phase transition temperature (VPTT) at around 32 °C in aqueous solutions, above which it collapses. In this work, combining experiments and molecular simulations, it is shown that PNIPAM microgels do not always exhibit a collapsed structure above the VPTT. Instead, PNIPAM in aqueous alcohol mixtures shows a two-step conformational transition, i.e., a collapse at low temperatures (T < 32 °C) and a reswelling when T > 50 °C. The present analysis indicates that delicate microscopic interaction details, together with the bulk solution properties, play a key role in dictating the reswelling behavior. Even when PNIPAM microgels swell with increasing T, this is not a standard upper critical solution behavior.
The present study addresses the multiresponsive behavior of poly(N-isopropylacrylamide) (PNIPAM) microgels adsorbed to interfaces. The microgels react to changes in temperature by shrinking in aqueous solution above their volume phase transition temperature (VPTT). Additionally, they shrink in mixtures of water and ethanol, although both individual liquids are good solvents for PNIPAM. The combination of this so-called cononsolvency effect and the temperature response of adsorbed microgels is studied by atomic force microscopy (AFM). Adsorbed microgels are of special interest because they are compressed considerably compared to those in bulk solution. It is shown that the impact of adsorption on swelling depends on the specific surface details, as well as the sample preparation. Thereby, the microgels are deposited on two different kinds of surfaces: on gold surface and on polycation (PAH) coating which show different interactions with the microgels in terms of electrostatic interaction and wettability. In addition, the microgels were deposited from different solvent mixtures. This influences the microgel structure and thereby the swelling properties. Nanorheology studies by dynamic AFM measurements lead to surprising results which are explained by the fact that not only polymer density but a subtle interaction between polymer and solvent might dominate the rheological properties. This work supports the view that preferential adsorption of ethanol at PNIPAM drives cononsolvency, while the shrinking at T > VPTT is caused by general breaking of hydrogen bonds between solvents and PNIPAM.
Photoinduced size changes in microgel particles loaded with gold nanoparticles (AuNPs) were investigated with an extended multiangle dynamic light scattering (DLS) setup. The DLS setup was equipped with a conventional laser (λ = 633 nm) to determine the microgel particle size. Additionally, a laser (λ = 532 nm) is installed to study the photoresponsive behavior of the AuNP-microgel hybrids. The wavelength of 532 nm is close to the absorption maximum of the plasmon resonance of the AuNPs used in the present study (i.e. spherical AuNPs with a diameter of 14 nm). The extended DLS setup enables us to follow in situ the change in microgel size during irradiation. The light stimulus is directly correlated with the size changes of the hybrid particles and the photothermal effect depends on the intensity of the excitation laser. The increase in excitation laser intensity results in a size reduction of hybrid particles because of the ability of AuNPs to partially transform the absorbed photon energy into heat which is emitted into the surrounding microgel network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.