An open source lesion sizing toolkit has been developed with a general architecture for implementing lesion segmentation algorithms and a reference algorithm for segmenting solid and part-solid lesions from lung CT scans. The CT lung lesion segmentation algorithm detects four three-dimensional features corresponding to the lung wall, vasculature, lesion boundary edges, and low density background lung parenchyma. These features form boundaries and propagation zones that guide the evolution of a subsequent level set algorithm. User input is used to determine an initial seed point for the level set and users may also define a region of interest around the lesion. The methods are validated against 18 nodules using CT scans of an anthropomorphic thorax phantom simulating lung anatomy. The scans were acquired under differing scanner parameters to characterize algorithm behavior under varying acquisition protocols. We also validated repeatability using six clinical cases in which the patient was rescanned on the same day (zero volume change). The source code, data sets, and a running application are all provided under an unrestrictive license to encourage reproducibility and foster scientific exchange.
Abstract. Thin-slice computer tomography provides high-resolution images that facilitate the diagnosis of early-stage lung cancer. However, the sheer size of the CT volumes introduces variability in radiological readings, driving the need for automated detection systems. The main contribution of this paper is a technique for combining geometric and intensity models with the analysis of local curvature for detecting pulmonary lesions in CT. The local shape at each voxel is represented via the principal curvatures of its associated isosurface without explicitly extracting the isosurface. The comparison of these curvatures to values derived from analytical shape models is then used to label the voxel as belonging to particular anatomical structures, e.g., nodules or vessels. The algorithm was evaluated on 242 CT exams with expert-determined ground truth. The performance of the algorithm is quantified by free-response receiver-operator characteristic curves, as well as by its potential for improvement in radiologist sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.