Aquaculture is central in meeting expanding global demands for shrimp consumption. Consequently, increasing feed use is mainly responsible for the overall environmental impact of aquaculture production. Significant amounts of fishmeal are included in shrimp diets, causing dependency on finite marine resources. Driven by economic incentives, terrestrial plant ingredients are widely viewed as sustainable alternatives. Incremental fishmeal substitution by plant ingredients in shrimp feed was modeled and effects on marine and terrestrial resources such as fish, land, freshwater, nitrogen, and phosphorus were assessed. We find that complete substitution of 20-30% fishmeal totals could lead to increasing demand for freshwater (up to 63%), land (up to 81%), and phosphorus (up to 83%), while other substitution rates lead to proportionally lower impacts. These findings suggest additional pressures on essential agricultural resources with associated socio-economic and environmental effects as a trade-off to pressures on finite marine resources. Even though the production of shrimp feed (or aquafeed in general) utilizes only a small percentage of the global crop production, the findings indicate that the sustainability of substituting fishmeal by plant ingredients should not be taken for granted, especially since aquaculture has been one of the fastest growing food sectors. Therefore, the importance of utilizing by-products and novel ingredients such as microbial biomass, algae, and insect meals in mitigating the use of marine and terrestrial resources is discussed.
Sustainability analyses of aquaculture typically ignore the fate and value of processing by-products. The aim of this study was to characterise the nutritional content of the common processing by-products (heads, frames, trimmings, skin, and viscera) of five important finfish species farmed in Europe; Atlantic salmon (Salmo salar), European seabass (Dicentrarchus labrax), gilthead seabream (Sparus aurata), common carp (Cyprinus carpio), and turbot (Psetta maxima) to inform on best utilisation strategies. Our results indicate a substantially higher total flesh yield (64–77%) can be achieved if fully processed, compared to fillet only (30–56%). We found that heads, frames, trimmings and skin from Atlantic salmon, European seabass, gilthead seabream and turbot frames showed medium to high edible yields, medium to high lipid, and medium to high eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) content, indicating significant potential for direct use in human food. By-products which are unattractive for use in food directly but have low ash content and medium to high crude protein, lipid and EPA and DHA content, such as viscera, could be directed to animal feed. Skin showed interesting nutritional values, but has more potential in non-food applications, such as the fashion, cosmetic and pharmaceutical industries. The results indicate potential to increase the direct food, animal feed and non-food value of European aquaculture, without an increase in production volumes or the use of additional resources. The importance of changing consumer perceptions and addressing infrastructure and legislative barriers to maximise utilisation is emphasised.
Aquatic animals are diverse in terms of species, but also in terms of production systems, the people involved, and the benefits achieved. In this concept piece, we draw on literature to outline how the diversity of aquatic animals, their production, and their consumption all influence their impact within the food system. Built on evidence from an array of reductionist and non-reductionist literature, we suggest that food systems researchers and policymakers adapt current methods and theoretical frameworks to appropriately contextualise aquatic animals in broader food systems. We do this through combining current understandings of food systems theory, value chain, livelihoods, nutritional outcomes, and planetary boundaries thinking. We make several claims around understanding the role of aquatic animals in terms of nutritional output and environmental impacts. We suggest a need to consider: (1) the diversity of species and production methods; (2) variable definitions of an “edible yield”; (3) circular economy principles and the impacts of co-products, and effects beyond nutrient provision; (4) role of aquatic animals in the overall diet; (5) contextual effects of preservation, preparation, cooking, and consumer choices; (6) globalised nature of aquatic animal trade across the value chain; and (7) that aquatic animals are produced from a continuum, rather than a dichotomy, of aquaculture or fisheries. We conclude by proposing a new framework that involves cohesive interdisciplinary discussions around aquatic animal foods and their role in the broader food system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.