There is an increased interest in using wearable inertial measurement units (IMUs) in clinical contexts for the diagnosis and rehabilitation of gait pathologies. Despite this interest, there is a lack of research regarding optimal sensor placement when measuring joint kinematics and few studies which examine functionally relevant motions other than straight level walking. The goal of this clinical measurement research study was to investigate how the location of IMU sensors on the lower body impact the accuracy of IMU-based hip, knee, and ankle angular kinematics. IMUs were placed on 11 different locations on the body to measure lower limb joint angles in seven participants performing the timed-up-and-go (TUG) test. Angles were determined using different combinations of IMUs and the TUG was segmented into different functional movements. Mean bias and root mean square error values were computed using generalized estimating equations comparing IMU-derived angles to a reference optical motion capture system. Bias and RMSE values vary with the sensor position. This effect is partially dependent on the functional movement analyzed and the joint angle measured. However, certain combinations of sensors produce lower bias and RMSE more often than others. The data presented here can inform clinicians and researchers of placement of IMUs on the body that will produce lower error when measuring joint kinematics for multiple functionally relevant motions. Optimization of IMU-based kinematic measurements is important because of increased interest in the use of IMUs to inform diagnose and rehabilitation in clinical settings and at home.
There are several algorithms that use the 3D acceleration and/or rotational velocity vectors from IMU sensors to identify gait events (i.e., toe-off and heel-strike). However, a clear understanding of how sensor location and the type of walking task effect the accuracy of gait event detection algorithms is lacking. To address this knowledge gap, seven participants were recruited (4M/3F; 26.0 ± 4.0 y/o) to complete a straight walking task and obstacle navigation task while data were collected from IMUs placed on the foot and shin. Five different commonly used algorithms to identify the toe-off and heel-strike gait events were applied to each sensor location on a given participant. Gait metrics were calculated for each sensor/algorithm combination using IMUs and a reference pressure sensing walkway. Results show algorithms using medial-lateral rotational velocity and anterior-posterior acceleration are fairly robust against different sensor locations and walking tasks. Certain algorithms applied to heel and lower lateral shank sensor locations will result in degraded algorithm performance when calculating gait metrics for curved walking compared to straight overground walking. Understanding how certain types of algorithms perform for given sensor locations and tasks can inform robust clinical protocol development using wearable technology to characterize gait in both laboratory and real-world settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.