Isolated human and mouse pancreatic islet cells and the rat insulinoma cell line RIN-m5F were used to examine the ability of recombinant interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha) to regulate the expression of the class I and class II major histocompatibility (MHC) surface proteins and mRNA in beta-cells. Each cytokine increased significantly the expression of class I MHC proteins as determined by double indirect immunofluorescence microscopy and flow cytofluorimetric analysis. In the RIN-m5F cells, this increase in surface expressed class I MHC proteins was mirrored by an increase in the level of class I MHC mRNA. The order of potency of the cytokines on class I MHC expression was TNF-alpha plus IFN-gamma greater than or equal to IFN-gamma greater than or equal to TNF-alpha. While IFN-gamma or TNF-alpha alone were without effect, in combination they were found to induce class II MHC proteins on 30-40% of human or murine beta-cells. In contrast, IFN-gamma plus TNF-alpha did not induce detectable class II MHC proteins or mRNA in the RIN-m5F cells. These findings indicate that 1) TNF-alpha, in addition to IFN-gamma, upregulates the expression of beta-cell class I MHC proteins and mRNA, and 2) more than one signal is required for the induction of class II MHC proteins on beta-cells. The ability of IFN-gamma plus TNF-alpha to induce class II MHC proteins on only a fraction of the normal beta-cell population and not on RIN-m5F cells suggests that this response is related to the differentiation state of the beta-cell.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.