Our aim was to put together and test a comprehensive functional MRI (fMRI) protocol which could compete with the intracarotid amytal (IAT) or Wada test for the localisation of language and memory function in patients with intractable temporal lobe epilepsy. The protocol was designed to be performed in under 1 h on a standard 1.5 tesla imager. We used five paradigms to test nine healthy right-handed subjects: complex scene-encoding, picture-naming, reading, word-generation and semantic-decision tasks. The combination of these tasks generated two activation maps related to memory in the mesial temporal lobes, and three language-related maps of activation in a major part of the known language network. The functional maps from the encoding and naming tasks showed typical and symmetrical posterior mesial temporal lobe activation related to memory in all subjects. Only four of nine subjects also showed symmetrical anterior hippocampal activation. Language lateralisation was best with the word generation and reading paradigms and proved possible in all subjects. The reading paradigm enables localisation of language function in the left anterior temporal pole and middle temporal gyrus, areas typically resected during epilepsy surgery. The combined results of this comprehensive f MRI protocol are adequate for a comparative study with the IAT in patients with epilepsy being assessed for surgery.
The primary goal of this study was to test the reliability of presurgical language lateralization in epilepsy patients with functional magnetic resonance imaging (fMRI) with a 1.0-T MR scanner using a simple word generation paradigm and conventional equipment. In addition, hemispherical fMRI language lateralization analysis and region of interest (ROI) analysis in the frontal and temporo-parietal regions were compared with the intracarotid amytal test (IAT). Twenty epilepsy patients under presurgical evaluation were prospectively examined by both fMRI and IAT. The fMRI experiment consisted of a word chain task (WCT) using the conventional headphone set and a sparse sequence. In 17 of the 20 patients, data were available for comparison between the two procedures. Fifteen of these 17 patients were categorized as left hemispheric dominant, and 2 patients demonstrated bilateral language representation by both fMRI and IAT. The highest reliability for lateralization was obtained using frontal ROI analysis. Hemispherical analysis was less powerful and reliable in all cases but one, while temporo-parietal ROI analysis was unreliable as a stand-alone analysis when compared with IAT. The effect of statistical threshold on language lateralization prompted for the use of t-value-dependent lateralization index plots. This study illustrates that fMRI-determined language lateralization can be performed reliably in a clinical MR setting operating at a low field strength of 1 T without expensive stimulus presentation systems.
Our results demonstrate increased effective temporoparietal connectivity in patients with aMCI, while maintaining intact behavioral performance. This might be a compensational mechanism to counteract a parietal-posterior cingulate gyrus disconnection. These findings highlight the importance of connectivity changes in the pathophysiology of AD. In addition, effective connectivity may be a promising method for evaluating interventions aimed at the promotion of compensatory mechanisms.
Objective: To reveal differences of cerebral activation related to language functions in post-operative temporal lobe epilepsy (TLE) patients. Methods: Right (RTL) and left temporal lobe (LTL) resected patients, and healthy controls were studied using functional magnetic resonance imaging (fMRI). Only patients with complete left-hemispheric language dominance according to the intracarotid amytal procedure (IAP) were included. Language-related activations were evoked by performing word generation and text reading language tasks. Activation lateralization and temporo-frontal distribution effects were analysed. Results: For word generation, only LTL patients showed reduced left lateralized activation compared to controls, due to a decrease in activation in the left prefrontal cortex and an increase in the right prefrontal cortex. For reading, the left-hemispheric lateralization in RTL patients increased because of enhanced activity in the left prefrontal cortex, whereas for LTL patients the activation became bilaterally distributed over the temporal lobes. Lateralization results between pre-operative IAP and postoperative fMRI were highly discordant. Significant temporo-frontal distribution changes manifested from the reading but not from the word generation task. * Corresponding author. Backes et al. / Epilepsy Research 66 (2005) [1][2][3][4][5][6][7][8][9][10][11][12] Conclusion: The cerebral language representation in post-operative LTL epilepsy patients is more bi-hemispherically lateralized than in controls and RTL patients. Post-operative temporo-frontal and interhemispheric redistribution effects, involving contralateral homologuous brain areas, are suggested to contribute to the cerebral reorganisation of language function.
Activation revealed by fMRI activation shows that IAT procedures, using active semantic language processing or comprehensive procedures with multiple language tasks have the highest guarantee for individual activation lateralization. Simple object naming does not guarantee a lateralized language fMRI activation pattern. Of the different memory procedures during IAT, the procedures (Interview and the Montreal) demanding encoding processing will be related to larger areas of bilateral hippocampal activation than procedures (Seattle) exclusively requiring retrieval. Moreover, tasks using recognition of previously presented language items (naming objects) are equally effective for assessing hippocampal activation compared with presenting separate memory items.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.