Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference (RNAi) experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16INK4A-Rb pathway. Loss of p16INK4A or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence, but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as TGF-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.
RNA binding proteins, such as IMP1, are emerging as essential regulators of intestinal development and cancer. IMP1 hypomorphic mice exhibit severe intestinal growth defects, yet it's role in adult intestinal epithelium is unclear. We employed ribosome profiling to test the effect of IMP1 loss on the "translatome" in colon cancer cell lines. In parallel, we evaluated mice with intestinal epithelial-specific Imp1 deletion (Imp1 ΔIEC ) following irradiation or colitis models. Ribosome-profiling revealed translation efficiency changes for multiple pathways important for intestinal homeostasis, including autophagy, in IMP1 knockout cells. We found increased autophagy flux in Imp1 ΔIEC mice, reinforced through in silico and biochemical analyses revealing direct binding of IMP1 to autophagy transcripts MAP1LC3B and ATG3. We found that Imp1 ΔIEC mice exhibit enhanced recovery following irradiation, which is attenuated with genetic deletion of autophagy gene Atg7.Finally, we demonstrated that IMP1 is upregulated in Crohn's disease patients and Imp1 loss lessened colitis severity in mice. These studies demonstrate that IMP1 acts as a posttranscriptional regulator of gut epithelial repair post-irradiation and colitis, in part through modulation of autophagy.
Stratified squamous epithelium of the esophagus is comprised of basal keratinocytes that execute a terminal differentiation program in overlying suprabasal and superficial cell layers. Although morphologic progression coupled with expression of specific molecular markers has been characterized along the esophageal epithelial differentiation gradient, the molecular heterogeneity within the cell types along this trajectory has yet to be classified at the level of single cell resolution. To explore the molecular characteristics of esophageal keratinocytes along the squamous differentiation continuum, we performed single cell RNA-Sequencing transcriptomic profiling of 7,972 cells from murine esophageal epithelial sheets. We identified 8 distinct cell clusters in esophageal epithelium, unveiling an unexpected level of diversity, particularly among basal cells. We further mapped the cellular pathways and lineage trajectories within basal, suprabasal, and superficial clusters as well as within the heterogeneous basal cell populations, providing a comprehensive molecular view of esophageal epithelial cells in the context of squamous differentiation. Finally, we explored the impact of tissue aging upon esophageal epithelial cell clusters and demonstrated that mitochondrial dysfunction is a feature of aging in normal esophageal epithelium. These studies provide an unparalleled molecular perspective on murine esophageal keratinocytes that will serve as a valuable resource for dissecting cell type-specific roles in esophageal biology under conditions of homeostasis, aging, and tissue pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.