Although many pests constrain rice production, weeds are considered to be the major barrier to achieving optimal yields. A predictive model based on naturally occurring mixed-species infestations in the field would enable growers to target the specific weed group that is the greatest contributor to yield loss, but as of now no such models are available. In 2013 and 2014, two empirical hyperbolic models were tested using the relative cover at canopy closure of groups of weed species as independent variables: grasses, sedges, broadleaves, grasses and sedges combined, grasses and broadleaves combined, and all weed species combined. Models were calibrated using data from experiments conducted at the California Rice Experiment Station, in Biggs, CA, and validated across four sites over 2 years, for a total of 7 site-year combinations. Of the three major weed groups, grasses, sedges, and broadleaves, the only groups positively related to yield loss in the multispecies infestation were grasses. At the model calibration site, grasses and sedges combined best predicted yield loss (corrected Akaike information criterion [AICc] = −21.5) in 2013, and grasses alone best predicted yield loss (AICc = −19.0) in 2014. Across the validation sites, the model using grasses and sedges combined was the best predictor in 5 out of 7 site-years. Accuracy of the predicted values at the model validation sites ranged from 6% mean average error to 17% mean average error. No single model and set of parameters accurately predicted losses across all years and locations, but relative cover of grasses and sedges combined at canopy closure was the best estimate over the most sites and years. Nomenclature: Rice, Oryza sativa L.
Control of weeds in cultivated crops is a pivotal component in successful crop production allowing higher yield and higher quality. In rice‐growing regions worldwide, weedy rice (Oryza sativa f. spontanea Rosh.) is a weed related to cultivated rice which infests rice fields. With populations across the globe evolving a suite of phenotypic traits characteristic of weeds and of cultivated rice, varying hypotheses exist on the origin of weedy rice. Here, we investigated the genetic diversity and possible origin of weedy rice in California using 98 simple sequence repeat (SSR) markers and an Rc gene‐specific marker. By employing phylogenetic clustering analysis, we show that four to five genetically distinct biotypes of weedy rice exist in California. Analysis of population structure and genetic distance among individuals reveals diverse evolutionary origins of California weedy rice biotypes, with ancestry derived from indica, aus, and japonica cultivated rice as well as possible contributions from weedy rice from the southern United States and wild rice. Because this diverse parentage primarily consists of weedy, wild, and cultivated rice not found in California, most existing weedy rice biotypes likely originated outside California.
Over the last 10 yr, California has experienced a series of ever-worsening droughts. Rice, traditionally a flooded crop, has come under increasing scrutiny with respect to its water use, leading to proposals to evaluate alternative irrigation systems. For growers, weed competition is one of the most limiting factors to maintaining high yields, so understanding the shifts among species in weed communities under the proposed alternative irrigation systems is vital. A field study was conducted from 2012 to 2014 to compare weed population and growth dynamics with three irrigation systems: (1) a conventional water-seeded control system (WS-Control), with a permanent flood of 10 to 15 cm from planting until 1 mo prior to harvest; (2) a water-seeded alternate wet and dry system (WS-AWD), with the field flooded from planting until canopy closure, after which floodwater was allowed to subside and the field was reflooded when the soil volumetric water content reached 35%; and (3) a drill-seeded alternate wet and dry system (DS-AWD), with rice drill seeded and then flush irrigated to establish the crop, after which the field was flooded until canopy closure and then underwent an alternate wet and dry (AWD) treatment similar to WS-AWD. In the AWD treatments, there were two drying periods, neither of which occurred after the heading stage. The dynamics of major weed species were evaluated using plant density counts (2012) and relative cover and biomass (2013 and 2014). Grasses (sprangletop and watergrass species) dominated the DS-AWD system; sedges, broadleaves, and grasses dominated both WS systems. The WS-AWD system increased smallflower umbrella sedge relative cover at canopy closure, relative dry weight at harvest, and percent frequency when compared with the WS-Control system. Yields did not differ across treatments when weeds were controlled (P > 0.05); in the absence of herbicides, yields in the WS-AWD were equivalent to the WS-Control (ranging from 40 to 65% of the herbicide-treated yields) and zero in the DS-AWD due to weed pressure. Nomenclature: bearded sprangletop, Leptochloa fusca (L.) Kunth N. Snow; ducksalad, Heteranthera rotundifolia (Kunth) Griseb.; redstem, Ammannia coccinea Rottb.; ricefield bulrush, Schoenoplectus mucronatus (L.) Palla; smallflower umbrella sedge, Cyperus difformis L.; rice (Oryza sativa L.).
The ability to change direction is essential to any animal that moves around in a complex, 3D environment. In this study we present the first 3D description of body positions during gliding turns in a mammalian gliding specialist, the southern flying squirrel, Glaucomys volans. In addition, we used these kinematic data to estimate the aerodynamic forces generated by the animals and rotational velocities and accelerations of the body while turning. These results were compared with similar measurements of flying squirrels during straight glides. The two individuals used in this study differed significantly in limb position asymmetries between the two sides of their bodies and also were significantly different in measures of turning performance. The individual with better performance used limb positions consistent with a primarily lift-based turning mechanism (banked turn), whereas the individual with poorer performance used limb positions consistent with a primarily drag-based turning mechanism (crabbed turn). Both individuals employed limb movements continuously through the gliding turn, but these movements did not have any consistent relationships with body rotations or lateral acceleration. As compared with straight glides, squirrels used significantly higher angles of attack and had lower lift-to-drag ratios, but did not differ in glide angle. Contrary to the typical view of maneuvering during gliding as a simple, static form of locomotion, the results presented here indicate that mammalian gliding is a complex behavior comprising the interplay of many components of limb position and wing shape that affect the balance of forces that control the turn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.