Abstract. In this paper, we deal with the problem of sequencing parts and robot moves in a robotic cell where the robot is used to feed machines in the cell. The robotic cell, which produces a set of parts of the same or different types, is a flow-line manufacturing system. Our objective is to maximize the long-run average throughput of the system subject to the constraint that the parts are to be produced in proportion of their demand. The cycle time formulas are developed and analyzed for this purpose for cells producing a single part type using two or three machines. A state space approach is used to address the problem. Both necessary and sufficient conditions are obtained for various cycles to be optimal. Finally, in the case of many part types, the problem of scheduling parts for a specific sequence of robot moves in a two machine cell is formulated as a solvable case of the traveling salesman problem.
A companion paper (Part I) considers the problem of minimizing the weighted earliness and tardiness of jobs scheduled on a single machine around a common due date, d, which is unrestrictively late. This paper (Part II) considers the problem of minimizing the unweighted earliness and tardiness of jobs, allowing the possibility that d is early enough to constrain the scheduling decision. We describe several optimality conditions. The recognition version of the problem is shown to be NP-complete in the ordinary sense, confirming a well known conjecture. Moreover, this complexity definition is precise, since we describe a dynamic programming algorithm which runs in pseudopolynomial time. This algorithm is also extremely efficient computationally, providing an improvement over earlier procedures, of almost two orders of magnitude in the size of instance that can be solved. Finally, we describe a special case of the problem which is polynomially solvable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.