Currently, third-generation sequencing techniques, which make it possible to obtain much longer DNA reads compared to the next-generation sequencing technologies, are becoming more and more popular. There are many possibilities for combining data from next-generation and third-generation sequencing. Herein, we present a new application called dnaasm-link for linking contigs, the result of de novo assembly of second-generation sequencing data, with long DNA reads. Our tool includes an integrated module to fill gaps with a suitable fragment of an appropriate long DNA read, which improves the consistency of the resulting DNA sequences. This feature is very important, in particular for complex DNA regions. Our implementation is found to outperform other state-of-the-art tools in terms of speed and memory requirements, which may enable its usage for organisms with a large genome, something which is not possible in existing applications. The presented application has many advantages: (i) it significantly optimizes memory and reduces computation time; (ii) it fills gaps with an appropriate fragment of a specified long DNA read; (iii) it reduces the number of spanned and unspanned gaps in existing genome drafts. The application is freely available to all users under GNU Library or Lesser General Public License version 3.0 (LGPLv3). The demo application, Docker image, and source code can be downloaded from project homepage.
No abstract
We present an algorithm to find corresponding authors of patents and scientific articles. The authors are given as records in Scopus and the Chinese Patents Database. This issue is known as the record linkage problem, defined as finding and linking individual records from separate databases that refer to the same real-world entity. The presented solution is based on a record linkage framework combined with text feature extraction and machine learning techniques. The main challenges were low data quality, lack of common record identifiers, and a limited number of other attributes shared by both data sources. Matching based solely on an exact comparison of authors’ names does not solve the records linking problem because many Chinese authors share the same full name. Moreover, the English spelling of Chinese names is not standardized in the analyzed data. Three ideas on how to extend attribute sets and improve record linkage quality were proposed: (1) fuzzy matching of names, (2) comparison of abstracts of patents and articles, (3) comparison of scientists’ main research areas calculated using all metadata available. The presented solution was evaluated in terms of matching quality and complexity on ≈250,000 record pairs linked by human experts. The results of numerical experiments show that the proposed strategies increase the quality of record linkage compared to typical solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.