The controlled synthesis of polyesters via epoxide/anhydride ring-opening copolymerization is a versatile and generally applicable method to make many sustainable polymers, but catalyst activities are limited and the required catalyst loadings are typically high. Here, novel heterodinuclear complexes, featuring Al(III)/M(I) (M = Na, K, Rb, Cs), show exceptional activities for phthalic anhydride and cyclohexene oxide copolymerization (catalyst = Al(III)/K(I), turnover frequency = 1072 h–1, 0.25 mol % catalyst loading vs anhydride, 100 °C). The Al(III)/K(I) catalyst is also tolerant to low loadings, maintaining a good performance at 0.025 mol % catalyst vs anhydride loading and 0.005 mol % vs epoxide. It rapidly polymerizes other epoxide/anhydride combinations yielding various semi-aromatic, rigid, and/or functionalizable polyesters and also shows activity in carbon dioxide/epoxide copolymerizations. The results of structure–activity, X-ray crystallography, polymerization kinetics, and density functional theory investigations support a mechanism with chain growth alternation between the metals. The rate-limiting step is proposed to involve epoxide coordination at Al(III) with K(I) carboxylate attack. Future exploitation of abundant and inexpensive Group 1 metals to deliver synergic polymerization catalysts is recommended.
Conspectus The development of sustainable plastic materials is an essential target of chemistry in the 21st century. Key objectives toward this goal include utilizing sustainable monomers and the development of polymers that can be chemically recycled/degraded. Polycarbonates synthesized from the ring-opening copolymerization (ROCOP) of epoxides and CO 2 , and polyesters synthesized from the ROCOP of epoxides and anhydrides, meet these criteria. Despite this, designing efficient catalysts for these processes remains challenging. Typical issues include the requirement for high catalyst loading; low catalytic activities in comparison with other commercialized polymerizations; and the requirement of costly, toxic cocatalysts. The development of efficient catalysts for both types of ROCOP is highly desirable. This Account details our work on the development of catalysts for these two related polymerizations and, in particular, focuses on dinuclear complexes, which are typically applied without any cocatalyst. We have developed mechanistic hypotheses in tandem with our catalysts, and throughout the Account, we describe the kinetic, computational, and structure–activity studies that underpin the performance of these catalysts. Our initial research on homodinuclear M(II)M(II) complexes for cyclohexene oxide (CHO)/CO 2 ROCOP provided data to support a chain shuttling catalytic mechanism, which implied different roles for the two metals in the catalysis. This mechanistic hypothesis inspired the development of mixed-metal, heterodinuclear catalysts. The first of this class of catalysts was a heterodinuclear Zn(II)Mg(II) complex, which showed higher rates than either of the homodinuclear [Zn(II)Zn(II) and Mg(II)Mg(II)] analogues for CHO/CO 2 ROCOP. Expanding on this finding, we subsequently developed a Co(II)Mg(II) complex that showed field leading rates for CHO/CO 2 ROCOP and allowed for unique insight into the role of the two metals in this complex, where it was established that the Mg(II) center reduced transition state entropy and the Co(II) center reduced transition state enthalpy. Following these discoveries, we subsequently developed a range of heterodinuclear M(III)M(I) catalysts that were capable of catalyzing a broad range of copolymerizations, including the ring-opening copolymerization of CHO/CO 2 , propylene oxide (PO)/CO 2 , and CHO/phthalic anhydride (PA). Catalysts featuring Co(III)K(I) and Al(III)K(I) were found to be exceptionally effective for PO/CO 2 and CHO/PA ROCOP, respectively. Such M(III)M(I) complexes operate through a dinuclear metalate mechanism, where the M(III) binds and activates monomers while the M(I) species binds the polymer change in close proximity to allow for insertion into the activated monomer. Our research illustrates how careful catalyst design can yield highly efficient systems and how the development o...
Switchable catalysis is a useful one-pot method to prepare block polyesters utilising a single catalyst exposed to a mixture of monomers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.