Loess‐paleosol sequences preserve detailed archives of climate change, reflecting the dynamics of aeolian dust sedimentation and the paleodust content of the atmosphere. The detailed investigation of particle size distributions (PSDs) of windblown sediments is an increasingly used approach to assess the paleorecord of aeolian dust dynamics. The central Asian loess belt offers the potential to reconstruct Pleistocene atmospheric circulation patterns along an adjacent west‐east transect within interior Eurasia through granulometric studies. In this study we present the aeolian dust record of the loess sequence at Remisowka (SE Kazakhstan), which reflects a detailed signal of glacial‐interglacial climate and atmospheric dynamics in central Asia. On the basis of radiocarbon and amino acid geochronologic data, long‐term semicontinuous trends in the aeolian dust record of the Last Glacial Cycle are observed and interpreted to reveal their paleoclimate signal. In consideration of the modern synoptical atmospheric circulation patterns and aeolian dust transport in central Asia, it is likely that the observed trends reflect the long‐term migration, seasonal duration, and permanency of the polar front during the late Pleistocene. Previously published models, which focused on the reciprocal glacial‐interglacial influence of the zonal Westerlies and the Asiatic high on the aeolian dust transport in central Asia, were overly simplified and should be modified to include the major influence of the Asiatic polar front. As the polar front activity is intimately connected with the development and position of the interhemispherically active, high‐level planetary frontal zone (HPFZ), the presented data give insight to long‐term aeolian dust dynamics and climate variability of interior Eurasia, which are linked with interhemispheric climates.
BackgroundA home based tele-monitoring system was developed to assess the effects of heat stress (days > 25°C) on clinical and functional status in patients with chronic obstructive pulmonary disease (COPD).MethodsSixty-two COPD patients (GOLD II–IV) were randomized into a tele-monitoring Group (TG, N = 32) or Control Group (CG, N = 30). Tele-monitoring included 1) daily clinical status (COPD Assessment Test-CAT), 2) daily lung function and 3) weekly 6-minute walk test (6MWT). Duration of monitoring lasted a total of nine months (9 M).ResultsFrom June 1st–August 31st 2012, 32 days with heat stress (29.0 ± 2.5°C) were recorded and matched with 32 thermal comfort days (21.0 ± 2.9°C). During heat stress, the TG showed a significant reduction in lung function and exercise capacity (FEV1% predicted: 51.1 ± 7.2 vs. 57.7 ± 5.0%; P <0.001 and 6MWT performance: 452 ± 85 vs. 600 ± 76 steps; P <0.001) and increase in CAT scores (19.2 ± 7.9 vs. 16.2 ± 7.2; P <0.001).Over summer, significantly fewer TG patients suffered exacerbation of COPD compared to CG patients (3 vs. 14; P = 0.006). Over entire 9 M follow-up, the TG group had fewer exacerbations compared to CG (7 vs. 22; P = 0.012), shorter cumulative hospital stay (34 vs. 97 days) and 43% fewer specialist consultations (24. vs. 42; P = 0.04).ConclusionHeat stress affects clinical and functional status in COPD. Tele-monitoring reduces exacerbation frequency and health care utilization during heat stress and other periods of the year. Trial registrationDRKS-ID: DRK00000705.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.