Development of CRISPR/Cas9 transient gene editing screening tools in plant biology has been hindered by difficulty of delivering high quantities of biologically active single guide RNAs (sgRNAs). Furthermore, it has been largely accepted that in vivo generated sgRNAs need to be devoid of extraneous nucleotides, which has limited sgRNA expression by delivery vectors. Here, we increased cellular concentrations of sgRNA by transiently delivering sgRNAs using a -derived vector (TRBO) designed with 5' and 3' sgRNA proximal nucleotide-processing capabilities. To demonstrate proof-of-principle, we used the TRBO-sgRNA delivery platform to target GFP in (16c) plants, and gene editing was accompanied by loss of GFP expression. Surprisingly, indel (insertions and deletions) percentages averaged nearly 70% within 7 d postinoculation using the TRBO-sgRNA constructs, which retained 5' nucleotide overhangs. In contrast, and in accordance with current models, in vitro Cas9 cleavage assays only edited DNA when 5' sgRNA nucleotide overhangs were removed, suggesting a novel processing mechanism is occurring in planta. Since the Cas9/TRBO-sgRNA platform demonstrated sgRNA flexibility, we targeted the paralogs with one sgRNA and also multiplexed two sgRNAs using a single TRBO construct, resulting in indels in three genes. TRBO-mediated expression of an RNA transcript consisting of an sgRNA adjoining a GFP protein coding region produced indels and viral-based GFP overexpression. In conclusion, multiplexed delivery of sgRNAs using the TRBO system offers flexibility for gene expression and editing and uncovered novel aspects of CRISPR/Cas9 biology.
Plant viruses were first implemented as heterologous gene expression vectors more than three decades ago. Since then, the methodology for their use has varied, but we propose it was the merging of technologies with virology tools, which occurred in three defined steps discussed here, that has driven viral vector applications to date. The first was the advent of molecular biology and reverse genetics, which enabled the cloning and manipulation of viral genomes to express genes of interest (vectors 1.0). The second stems from the discovery of RNA silencing and the development of high-throughput sequencing technologies that allowed the convenient and widespread use of virus-induced gene silencing (vectors 2.0). Here, we briefly review the events that led to these applications, but this treatise mainly concentrates on the emerging versatility of gene-editing tools, which has enabled the emergence of virus-delivered genetic queries for functional genomics and virology (vectors 3.0).
We report on further development of the agroinfiltratable Tobacco mosaic virus (TMV)-based overexpression (TRBO) vector to deliver CRISPR/Cas9 components into plants. First, production of a Cas9 (HcoCas9) protein from a binary plasmid increased when co-expressed in presence of suppressors of gene silencing, such as the TMV 126-kDa replicase or the Tomato bushy stunt virus P19 protein. Such suppressor-generated elevated levels of Cas9 expression translated to efficient gene editing mediated by TRBO-G-3′gGFP expressing GFP and also a single guide RNA targeting the mgfp5 gene in the Nicotiana benthamiana GFP-expressing line 16c. Furthermore, HcoCas9 encoding RNA, a large cargo insert of 4.2 kb, was expressed from TRBO-HcoCas9 to yield Cas9 protein again at higher levels upon co-expression with P19. Likewise, co-delivery of TRBO-HcoCas9 and TRBO-G-3′gGFP in the presence of P19 also resulted in elevated levels percentages of indels (insertions and deletions). These data also revealed an age-related phenomenon in plants whereby the RNA suppressor P19 had more of an effect in older plants. Lastly, we used a single TRBO vector to express both Cas9 and a sgRNA. Taken together, we suggest that viral RNA suppressors could be used for further optimization of single viral vector delivery of CRISPR gene editing parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.