Objective To quantify the association of cancer treatment delay and mortality for each four week increase in delay to inform cancer treatment pathways. Design Systematic review and meta-analysis. Data sources Published studies in Medline from 1 January 2000 to 10 April 2020. Eligibility criteria for selecting studies Curative, neoadjuvant, and adjuvant indications for surgery, systemic treatment, or radiotherapy for cancers of the bladder, breast, colon, rectum, lung, cervix, and head and neck were included. The main outcome measure was the hazard ratio for overall survival for each four week delay for each indication. Delay was measured from diagnosis to first treatment, or from the completion of one treatment to the start of the next. The primary analysis only included high validity studies controlling for major prognostic factors. Hazard ratios were assumed to be log linear in relation to overall survival and were converted to an effect for each four week delay. Pooled effects were estimated using DerSimonian and Laird random effect models. Results The review included 34 studies for 17 indications (n=1 272 681 patients). No high validity data were found for five of the radiotherapy indications or for cervical cancer surgery. The association between delay and increased mortality was significant (P<0.05) for 13 of 17 indications. Surgery findings were consistent, with a mortality risk for each four week delay of 1.06-1.08 (eg, colectomy 1.06, 95% confidence interval 1.01 to 1.12; breast surgery 1.08, 1.03 to 1.13). Estimates for systemic treatment varied (hazard ratio range 1.01-1.28). Radiotherapy estimates were for radical radiotherapy for head and neck cancer (hazard ratio 1.09, 95% confidence interval 1.05 to 1.14), adjuvant radiotherapy after breast conserving surgery (0.98, 0.88 to 1.09), and cervix cancer adjuvant radiotherapy (1.23, 1.00 to 1.50). A sensitivity analysis of studies that had been excluded because of lack of information on comorbidities or functional status did not change the findings. Conclusions Cancer treatment delay is a problem in health systems worldwide. The impact of delay on mortality can now be quantified for prioritisation and modelling. Even a four week delay of cancer treatment is associated with increased mortality across surgical, systemic treatment, and radiotherapy indications for seven cancers. Policies focused on minimising system level delays to cancer treatment initiation could improve population level survival outcomes.
In a meta-analysis of the available literature on time to AC, longer time to AC was associated with worse survival among patients with resected colorectal cancer.
These findings strengthen the hypothesis that the risk of bladder cancer is increased with long-term exposure to disinfection byproducts at levels currently observed in many industrialized countries.
Chlorine is by far the most commonly used chemical for the disinfection of water supplies in North America. However, chlorine reacts with organic material in the raw water producing a number of halogenated hydrocarbon by-products. This population-based case-control study in Ontario, Canada examined the relationship between bladder cancer and exposure to chlorination by-products in public water supplies. Residence and water source histories and data from municipal water supplies were used to estimate individual exposure according to water source, chlorination status, and by-product levels (represented by trihalomethane [THM] concentration). Exposures were estimated for the 40-year period prior to the interview, using 696 cases diagnosed with bladder cancer between 1 September 1992 and 1 May 1994 and 1,545 controls with at least 30 years of exposure information. Odds ratios (OR) adjusted for potential confounders were used to estimate relative risk. Those exposed to chlorinated surface water for 35 or more years had an increased risk of bladder cancer compared with those exposed for less than 10 years (OR = 1.41, 95 percent confidence interval [CI] = 1.10-1.81). Those exposed to an estimated THM level > or = 50 micrograms/liter for 35 or more years had 1.63 times the risk of those exposed for less than 10 years (CI = 1.08-2.46). These results indicate that the risk of bladder cancer increases with both duration and concentration of exposure to chlorination by-products, with population attributable risks of about 14 to 16 percent. Chlorination by-products represent a potentially important risk factor for bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.