Forensic identification of batches of homemade explosives (HME) poses a difficult analytical challenge. Differentiation among peroxide explosives is reported herein using a colorimetric sensor array and handheld scanner with a field-appropriate sampling protocol. Clear discrimination was demonstrated among twelve peroxide samples prepared from different reagents, with a classification accuracy >98%.
We investigated the shock initiation of energetic materials with a tabletop apparatus that uses km s−1 laser-driven flyer plates to initiate tiny explosive charges and obtains complete temperature histories with a high dynamic range. By comparing various microstructured formulations, including a pentaerythritol tetranitrate (PETN) based plastic explosive (PBX) denoted XTX-8003, we determined that micron-scale pores were needed to create high hot spot temperatures. In charges where micropores (i.e., micron-sized pores) were present, a hot spot temperature of 6000 K was observed; when the micropores were pre-compressed to nm scale, however, the hot spot temperature dropped to ∼4000 K. By comparing XTX-8003 with an analog that replaced PETN by nonvolatile silica, we showed that the high temperatures require gas in the pores, that the high temperatures were created by adiabatic gas compression, and that the temperatures observed can be controlled by the choice of ambient gases. The hot spots persist in shock-compressed PBXs even in vacuum because the initially empty pores became filled with gas created in-situ by shock-induced chemical decomposition.
Pulsed lasers can launch thin metal foils at km s -1, but for precision measurements in shock compression science and shock wave spectroscopy, where onedimensional shock compression is vital, flyer plate impacts with targets must have a high degree of flatness and minimal tilt, and the flyer speeds and impact times at the target must be highly reproducible. We have developed an apparatus that combines ultrafast stroboscopic optical microscopy with photon Doppler velocimetry to study impacts of laser-launched Al and Cu flyer plates with flat, transparent glass targets. The flyer plates were 0.5 mm in diameter, and ranged from 12 to 100 lm thick, with flyer speeds up to 6.25 km s -1 . The velocity variations over 30-60 launches from the same flyer plate optic can be as low as 0.6 %, and the impact time variations can be as low as 0.8 ns. Stroboscopic image streams (reconstructed movies) show uniform, flat impacts with a glass target. These stroboscopic images can be used to estimate the tilt in the flyer-target impact to be \1mrad.
We describe studies of shock initiation and shock‐to‐detonation transitions in energetic materials using a tabletop shock compression microscope with nanosecond time resolution and micrometer spatial resolution. Planar input shocks with durations of 4–20 ns are produced using 0–4.5 km/s laser‐launched flyer plates. Emphasis is on measurements of temperature, velocities, pressure, and microstructure using photon Doppler velocimetry (PDV), optical pyrometry and high‐speed videography. Techniques are discussed for fabricating disposable shock target arrays of tiny plastic‐bonded explosives (PBX), liquid and powder explosives, and single‐crystal explosives for high‐throughput studies. Optical temperature measurements of shocked triaminotrinitrobenzene (TATB) are discussed. Since TATB is yellow, we developed methods to correct for the blue absorption to obtain more accurate temperatures. Hot spots in shocked polymer‐encased HMX (octahydro‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocine) crystals are observed in real‐time, showing a hot spot produced in a collapsing void that ignites a deflagration. Despite the small dimensions of our explosive charges (typically 1 mm diameter and 250 μm length), we produced reproducible detonation states in solid and liquid explosives using short‐duration shocks near the von Neumann spike (VNS) pressure. We show the VNS pressure is associated with a transition to high‐efficiency gas production from the explosives. In studies of NM, prior to detonation, we see reaction originating at hot spots which coalesce to form a superdetonation.
The ability to direct the morphology of cobalt sol-gel materials by using the simple synthetic parameters in epoxide-driven polycondensations has been dramatically demonstrated, and the influence of such morphological differences upon the supercapacity of the materials has been explored. Precursor salt, epoxide, and solvent all influence the speed of the sol-gel transition and the size and shape of the features observed in the as-prepared materials, thereby leading to highly varied microstructures including spheres, sponge-like networks, and plate assemblies of varied size. These morphological features of the as-prepared cobalt aerogels were observed for the first time by high resolution scanning electron microscopy (HRSEM). The as-prepared aerogel materials were identified by powder X-ray diffraction and thermogravimetry as weakly crystalline or amorphous cobalt basic salts with the general formula Co(OH)(2-n)X(n) where X = Cl or NO3 according to the precursor salt used in the synthesis. For all samples, the morphology was preserved through mild calcining to afford spinel phase Co3O4 in a variety of microstructures. Wide-ranging specific surface areas were determined for the as-prepared and calcined phases by physisorption analysis in agreement with the morphologies observed by HRSEM. The Co3O4 aerogels were evaluated for their supercapacitive performance by cyclic voltammetry. The various specimens exhibit capacitances ranging from 110 to 550 F g(-1) depending upon the attributes of the particular aerogel material, and the best specimen was found to have good cycle stability. These results highlight the epoxide-driven sol-gel condensation as a versatile preparative route that provides wide scope in materials' properties and enables the analysis of structure-performance relationships in metal oxide materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.