Graphical AbstractHighlights d Neural computation relies on compartmentalized dendrites to discern inputs d A method is described to systematically derive the degree of compartmentalization d There are substantially fewer functional compartments than dendritic branches d Compartmentalization is dynamic and can be tuned by synaptic inputs In BriefMany neuronal computations rely on the compartmentalization of dendrites into functional subunits. Wybo et al. investigate the number of these subunits that can coexist on a neuron. They find that there are substantially fewer subunits than dendritic branches but that subunit extent and number can be modified by synaptic inputs. SUMMARYThe dendritic tree of neurons plays an important role in information processing in the brain. While it is thought that dendrites require independent subunits to perform most of their computations, it is still not understood how they compartmentalize into functional subunits. Here, we show how these subunits can be deduced from the properties of dendrites. We devised a formalism that links the dendritic arborization to an impedance-based tree graph and show how the topology of this graph reveals independent subunits. This analysis reveals that cooperativity between synapses decreases slowly with increasing electrical separation and thus that few independent subunits coexist. We nevertheless find that balanced inputs or shunting inhibition can modify this topology and increase the number and size of the subunits in a context-dependent manner. We also find that this dynamic recompartmentalization can enable branch-specific learning of stimulus features. Analysis of dendritic patch-clamp recording experiments confirmed our theoretical predictions.
Dendrites shape information flow in neurons. Yet, there is little consensus on the level of spatial complexity at which they operate. We present a flexible and fast method to obtain simplified neuron models at any level of complexity.Through carefully chosen parameter fits, solvable in the least squares sense, we obtain optimal reduced compartmental models. We show that (back-propagating) action potentials, calcium-spikes and NMDA-spikes can all be reproduced with few compartments. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping the affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input impedance between the ablated branches and the next proximal dendrite. Further, our methodology fits reduced models directly from experimental data, without requiring morphological reconstructions.We provide a software toolbox that automatizes the simplification, eliminating a common hurdle towards including dendritic computations in network models.
Dendrites shape information flow in neurons. Yet, there is little consensus on the level of spatial complexity at which they operate. Through carefully chosen parameter fits, solvable in the least-squares sense, we obtain accurate reduced compartmental models at any level of complexity. We show that (back-propagating) action potentials, Ca2+ spikes, and N-methyl-D-aspartate spikes can all be reproduced with few compartments. We also investigate whether afferent spatial connectivity motifs admit simplification by ablating targeted branches and grouping affected synapses onto the next proximal dendrite. We find that voltage in the remaining branches is reproduced if temporal conductance fluctuations stay below a limit that depends on the average difference in input resistance between the ablated branches and the next proximal dendrite. Furthermore, our methodology fits reduced models directly from experimental data, without requiring morphological reconstructions. We provide software that automatizes the simplification, eliminating a common hurdle toward including dendritic computations in network models.
Neurons are spatially extended structures that receive and process inputs on their dendrites. It is generally accepted that neuronal computations arise from the active integration of synaptic inputs along a dendrite between the input location and the location of spike generation in the axon initial segment. However, many application such as simulations of brain networks, use point-neurons -neurons without a morphological component-as computational units to keep the conceptual complexity and computational costs low. Inevitably, these applications thus omit a fundamental property of neuronal computation. In this work, we present an approach to model an artificial synapse that mimics dendritic processing without the need to explicitly simulate dendritic dynamics. The model synapse employs an analytic solution for the cable equation to compute the neuron's membrane potential following dendritic inputs. Green's function formalism is used to derive the closed version of the cable equation. We show that by using this synapse model, point-neurons can achieve results that were previously limited to the realms of multi-compartmental models. Moreover, a computational advantage is achieved when only a small number of simulated synapses impinge on a morphologically elaborate neuron. Opportunities and limitations are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.