The gastrointestinal tract maintains energy and glucose homeostasis, in part through nutrient-sensing and subsequent signaling to the brain and other tissues. In this review, we highlight the role of small intestinal nutrient-sensing in metabolic homeostasis, and link high-fat feeding, obesity, and diabetes with perturbations in these gut-brain signaling pathways. We identify how lipids, carbohydrates, and proteins, initiate gut peptide release from the enteroendocrine cells through small intestinal sensing pathways, and how these peptides regulate food intake, glucose tolerance, and hepatic glucose production. Lastly, we highlight how the gut microbiota impact small intestinal nutrient-sensing in normal physiology, and in disease, pharmacological and surgical settings. Emerging evidence indicates that the molecular mechanisms of small intestinal nutrient sensing in metabolic homeostasis have physiological and pathological impact as well as therapeutic potential in obesity and diabetes.
Mice are commonly housed at room temperatures below their thermoneutral zone meaning they are exposed to chronic thermal stress. r Endurance exercise induces browning and mitochondrial biogenesis in white adipose tissue of rodents, but there are conflicting reports of this phenomenon in humans. r We hypothesized that the ambient room temperature at which mice are housed could partially explain these discrepant reports between humans and rodents. r We housed mice at room temperature or thermoneutrality and studied their physiological responses to acute and chronic exercise. We found that thermoneutral housing altered running behaviour and glucose homeostasis, and further, that exercise-induced markers of mitochondrial biogenesis and the browning of white adipose tissue were reduced in mice housed at thermoneutrality.
Obesity and type 2 diabetes are significant risk factors in the development of neurodegenerative diseases, such as Alzheimer's disease. A variety of cellular mechanisms, such as altered Akt and AMPK and increased inflammatory signaling, contribute to neurodegeneration. Exercise training can improve markers of neurodegeneration, but the underlying mechanisms remain unknown. The purpose of this study was to determine the effects of a single bout of exercise on markers of neurodegeneration and inflammation in brains from mice fed a high-fat diet. Male C57BL/6 mice were fed a low (LFD; 10% kcal from lard)- or a high-fat diet (HFD; 60% kcal from lard) for 7 wk. HFD mice underwent an acute bout of exercise (treadmill running: 15 m/min, 5% incline, 120 min) followed by a recovery period of 2 h. The HFD increased body mass and glucose intolerance (both P < 0.05). This was accompanied by an approximately twofold increase in the phosphorylation of Akt, ERK, and GSK in the cortex (P < 0.05). Following exercise, there was a decrease in beta-site amyloid precursor protein cleaving enzyme 1 (BACE1; P < 0.05) and activity (P < 0.001). This was accompanied by a reduction in AMPK phosphorylation, indicative of a decline in cellular stress (P < 0.05). Akt and ERK phosphorylation were decreased following exercise in HFD mice to a level similar to that of the LFD mice (P < 0.05). This study demonstrates that a single bout of exercise can reduce BACE1 content and activity independent of changes in adiposity. This effect is associated with reductions in Akt, ERK, and AMPK signaling in the cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.