Photoacoustic is an emerging biomedical imaging modality, which allows imaging optical absorbers in the tissue by acoustic detectors (light in - sound out). Such a technique has an immense potential for clinical translation since it allows high resolution, sufficient imaging depth, with diverse endogenous and exogenous contrast, and is free from ionizing radiation. In recent years, tremendous developments in both the instrumentation and imaging agents have been achieved. These opened avenues for clinical imaging of various sites allowed applications such as brain functional imaging, breast cancer screening, diagnosis of psoriasis and skin lesions, biopsy and surgery guidance, the guidance of tumor therapies at the reproductive and urological systems, as well as imaging tumor metastases at the sentinel lymph nodes. Here we survey the various clinical and pre-clinical literature and discuss the potential applications and hurdles that still need to be overcome.
For many solid tumors, surgical resection remains the gold standard and tumor-involved margins are associated with poor clinical outcomes. Near-infrared (NIR) fluorescence imaging using molecular agents has shown promise for imaging during resection. However, for cancers with difficult imaging conditions, surgical value may lie in tumor mapping of surgical specimens. We thus evaluated a novel approach for real-time, intraoperative tumor margin assessment. Twenty-one adult patients with biopsy-confirmed squamous cell carcinoma arising from the head and neck (HNSCC) scheduled for standard-of-care surgery were enrolled. Cohort 1 ( = 3) received panitumumab-IRDye800CW at an intravenous microdose of 0.06 mg/kg, cohort 2A ( = 5) received 0.5 mg/kg, cohort 2B ( = 7) received 1 mg/kg, and cohort 3 ( = 6) received 50 mg. Patients were followed 30 days postinfusion and adverse events were recorded. Imaging was performed using several closed- and wide-field devices. Fluorescence was histologically correlated to determine sensitivity and specificity. imaging demonstrated tumor-to-background ratio (TBR) of 2 to 3, compared with specimen imaging TBR of 5 to 6. We obtained clear differentiation between tumor and normal tissue, with a 3-fold signal difference between positive and negative specimens ( < 0.05). We achieved high correlation of fluorescence intensity with tumor location with sensitivities and specificities >89%; fluorescence predicted distance of tumor tissue to the cut surface of the specimen. This novel method of detecting tumor-involved margins in surgical specimens using a cancer-specific agent provides highly sensitive and specific, real-time, intraoperative surgical navigation in resections with complex anatomy, which are otherwise less amenable to image guidance. This study demonstrates that fluorescence can be used as a sensitive and specific method of guiding surgeries for head and neck cancers and potentially other cancers with challenging imaging conditions, increasing the probability of complete resections and improving oncologic outcomes. .
Background The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC) is poor and selection of patients for surgery is challenging. This study examined the impact of a positive resection margin (R1) on locoregional recurrence (LRR) and overall survival (OS); and also aimed to identified tumour characteristics and/or technical factors associated with a positive resection margin in patients with PDAC. Methods Patients scheduled for pancreatic resection for PDAC between 2006 and 2016 were identified from an institutional database. The effect of resection margin status, patient characteristics and tumour characteristics on LRR, distant metastasis and OS was assessed. Results A total of 322 patients underwent pancreatectomy for PDAC. A positive resection (R1) margin was found in 129 patients (40·1 per cent); this was associated with decreased OS compared with that in patients with an R0 margin (median 15 (95 per cent c.i. 13 to 17) versus 22 months; P < 0·001). R1 status was associated with reduced time to LRR (median 16 versus 36 (not estimated, n.e.) months; P = 0·002). Disease recurrence patterns were similar in the R1 and R0 groups. Risk factors for early recurrence were tumour stage, positive lymph nodes (N1) and perineural invasion. Among 100 patients with N0 disease, R1 status was associated with shorter OS compared with R0 resection (median 17 (10 to 24) versus 45 (n.e.) months; P = 0·002), whereas R status was not related to OS in 222 patients with N1 disease (median 14 (12 to 16) versus 17 (15 to 19) months after R1 and R0 resection respectively; P = 0·068). Conclusion Although pancreatic resection with a positive margin was associated with poor survival and early recurrence, particularly in patients with N1 disease, disease recurrence patterns were similar between R1 and R0 groups.
Background Operative management of pancreatic ductal adenocarcinoma (PDAC) is complicated by several key decisions during the procedure. Identification of metastatic disease at the outset and, when none is found, complete (R0) resection of primary tumor are key to optimizing clinical outcomes. The use of tumor-targeted molecular imaging, based on photoacoustic and fluorescence optical imaging, can provide crucial information to the surgeon. The first-in-human use of multimodality molecular imaging for intraoperative detection of pancreatic cancer is reported using cetuximab-IRDye800, a near-infrared fluorescent agent that binds to epidermal growth factor receptor. Methods A dose-escalation study was performed to assess safety and feasibility of targeting and identifying PDAC in a tumor-specific manner using cetuximab-IRDye800 in patients undergoing surgical resection for pancreatic cancer. Patients received a loading dose of 100 mg of unlabeled cetuximab before infusion of cetuximab-IRDye800 (50 mg or 100 mg). Multi-instrument fluorescence imaging was performed throughout the surgery in addition to fluorescence and photoacoustic imaging ex vivo. Results Seven patients with resectable pancreatic masses suspected to be PDAC were enrolled in this study. Fluorescence imaging successfully identified tumor with a significantly higher mean fluorescence intensity in the tumor (0.09 ± 0.06) versus surrounding normal pancreatic tissue (0.02 ± 0.01), and pancreatitis (0.04 ± 0.01; p < 0.001), with a sensitivity of 96.1% and specificity of 67.0%. The mean photoacoustic signal in the tumor site was 3.7-fold higher than surrounding tissue. Conclusions The safety and feasibilty of intraoperative, tumor-specific detection of PDAC using cetuximab-IRDye800 with multimodal molecular imaging of the primary tumor and metastases was demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.