Background and Aims:The assembly and secretion of VLDL from the liver, a pathway that affects hepatic and plasma lipids, remains incompletely understood. We set out to identify players in the VLDL biogenesis pathway by identifying genes that are co-expressed with the MTTP gene that encodes for microsomal triglyceride transfer protein, key to the lipidation of apolipoprotein B, the core protein of VLDL. Using human and murine transcriptomic data sets, we identified small leucine-rich protein 1 (SMLR1), encoding for small leucine-rich protein 1, a protein of unknown function that is exclusively expressed in liver and small intestine.
The recent introduction of inhibitors of proprotein convertase subtilisin/kexin 9 to lower low-density lipoprotein (LDL) cholesterol on top of statins or as monotherapy is rapidly changing the landscape of treatment of atherosclerotic cardiovascular disease (ASCVD). However, existing lipid-lowering drugs have little impact on lipoprotein(a) (Lp(a)) or plasma triglycerides, two other risk factors for ASCVD. This review summarizes the evidence and the rationale to target Lp(a) and triglycerides and provides an overview of currently tested strategies to lower Lp(a), apolipoprotein C-III and angiopoietin-like protein 3. In addition, it summarizes new findings on the use of omega-3 fatty acids (OM3FA) to fight ASCVD. With the exception of OM3FA supplementation, the promise of the experimental drugs discussed here depends on the long-term safety and efficacy of monoclonal antibodies and/or antisense oligonucleotides Clinical outcome trials will ultimately prove whether these new therapeutic modalities will reduce ASCVD risk.
Purpose of Review The accumulation of triglyceride-rich lipoproteins (TRLs) in plasma in patients with familial chylomicronaemia syndrome (FCS) or severe hypertriglyceridemia is associated with an increased risk of potentially life-threatening pancreatitis. Elevated TRL levels have also been suggested to contribute to atherosclerotic cardiovascular disease (ASCVD). This review provides the latest progress that has been made in this field of research. Recent Findings Apolipoprotein C-III and angiopoietin-like protein 3 play key roles in the metabolism of TRLs. Targeting their production in the liver or their presence in the circulation effectively reduces triglycerides in patients with FCS or severe hypertriglyceridemia. Attempts to reduce triglyceride synthesis in the small intestine have been halted. Early studies with a fibroblast growth factor 21 agonist have shown to reduce plasma triglycerides and hepatic steatosis and improve glucose homeostasis. Summary New drugs have recently been shown to effectively reduce plasma triglycerides which render hope for treating the risk of pancreatitis. Studies that have just been initiated will learn whether this unmet clinical will be met. It is too early to evaluate the potential of these drugs to reduce the risk of atherosclerosis through the reduction of triglycerides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.