Stable isotope ratios are reported in the literature in terms of a deviation from an international standard (delta-values). The referencing procedures, however, differ from instrument to instrument and are not consistent between measurement facilities. This paper reviews an attempt to unify the strategy for referencing isotopic measurements. In particular, emphasis is given to the importance of identical treatment of sample and reference material ('IT principle'), which should guide all isotope ratio determinations and evaluations. The implementation of the principle in our laboratory, the monitoring of our measurement quality, the status of the international scales and reference materials and necessary correction procedures are discussed.
Consistency of δ 13 C measurements can be improved 39-47% by anchoring the δ 13 C scale with two isotopic reference materials differing substantially in 13 C/ 12 C. It is recommended that δ 13 C values of both organic and inorganic materials be measured and expressed relative to VPDB (Vienna Peedee belemnite) on a scale normalized by assigning consensus values of-46.6‰ to L-SVEC lithium carbonate and +1.95‰ to NBS 19 calcium carbonate. Uncertainties of other reference material values on this scale are improved by factors up to two or more, and the values of some have been notably shifted: the δ 13 C of NBS 22 oil is-30.03‰.
Soil samples were collected in six South American countries in a total of 71 different 1 ha forest plots across the Amazon Basin as part of the RAINFOR project. They were analysed for total and exchangeable cations, C, N, pH with various P fractions also determined. Physical properties were also examined and an index of soil physical quality proposed. A diverse range of soils was found. For the western areas near the Andean cordillera and the southern and northern fringes, soils tend to be distributed among the lower pedogenetic levels, while the central and eastern areas of Amazonia have more intensely weathered soils. This gives rise to a large variation of soil chemical and physical properties across the Basin, with soil properties varying predictably along a gradient of pedogenic development. Nutrient pools generally increased slightly in concentration from the youngest to the intermediate aged soils after which a gradual decline was observed with the lowest values found in the most weathered soils. Soil physical properties were strongly correlated with soil fertility, with favourable physical properties occurring in highly weathered and nutrient depleted soils and with the least weathered, more fertile soils having higher incidence of limiting physical properties. Soil phosphorus concentrations varied markedly in accordance with weathering extent and appear to exert an important influence on the nitrogen cycle of Amazon forest soils
Abstract:The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the "best measurement" of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.