Resection of retroperitoneal tumors is usually perfomed using the anterior retroperitoneal approach. Our report presents an innovative method utilizing a robotic surgical system. A 50-yr-old male patient visited our hospital due to a known paravertebral mass. Magnetic resonance imaging showed a well-encapsulated mass slightly abutting the abdominal aorta and left psoas muscle at the L4-L5 level. The tumor seemed to be originated from the prevertebral sympathetic plexus or lumbosacral trunk and contained traversing vessels around the tumor capsule. A full-time robotic transperitoneal tumor resection was performed. Three trocars were used for the robotic camera and working arms. The da Vinci Surgical System® provided delicate dissection in the small space and the tumor was completely removed without damage to the surrounding organs and great vessels. This case demonstrates the feasibility of robotic resection in retroperitoneal space. Robotic surgery offered less invasiveness in contrast to conventional open surgery.
The low survival rate of graft stem cells after transplantation into recipient tissue is a major obstacle for successful stem cell therapy. After transplantation into the site of spinal cord injury, the stem cells face not only hypoxia due to low oxygen conditions, but also a lack of nutrients caused by damaged tissues and poor vascular supply. To improve the survival of therapeutic stem cells after grafting into the injured spinal cord, we examined the effects of cotransplanting mouse neural stem cells (mNSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs) on mNSC viability. The viability of mNSCs in coculture with AT-MSCs was significantly increased compared to mNSCs alone in an in vitro injury model using serum deprivation (SD), hydrogen peroxide (H(2)O(2)), and combined (SD + H(2)O(2)) injury mimicking the ischemic environment of the injured spinal cord. We demonstrated that AT-MSCs inhibited the apoptosis of mNSCs in SD, H(2)O(2), and combined injury models. Consistent with these in vitro results, mNSCs transplanted into rat spinal cords with AT-MSCs showed better survival rates than mNSCs transplanted alone. These findings suggest that cotransplantation of mNSCs with AT-MSCs may be a more effective transplantation protocol to improve the survival of cells transplanted into the injured spinal cord.
These results suggest a proliferative, protective, and neural inductive potential of FGF-2 for transplanted hBMSCs, as well as a possible role for sustained FGF-2 delivery along with hBMSCs transplantation in the injured spinal cord. Future studies will be required to ascertain the safety FGF-2-containing HCPNs before clinical application.
These results strongly suggest the potential utility of mNSCs modified by a hypoxia-inducible VEGF gene expression system in the development of effective stem cell transplantation protocols in SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.