No abstract
We carried out an experiment to determine whether student learning gains in a large, traditionally taught, upper-division lecture course in developmental biology could be increased by partially changing to a more interactive classroom format. In two successive semesters, we presented the same course syllabus using different teaching styles: in fall 2003, the traditional lecture format; and in spring 2004, decreased lecturing and addition of student participation and cooperative problem solving during class time, including frequent in-class assessment of understanding. We used performance on pretests and posttests, and on homework problems to estimate and compare student learning gains between the two semesters. Our results indicated significantly higher learning gains and better conceptual understanding in the more interactive course. To assess reproducibility of these effects, we repeated the interactive course in spring 2005 with similar results. Our findings parallel results of similar teaching-style comparisons made in other disciplines. On the basis of this evidence, we propose a general model for teaching large biology courses that incorporates interactive engagement and cooperative work in place of some lecturing, while retaining course content by demanding greater student responsibility for learning outside of class.
When students answer an in-class conceptual question individually using clickers, discuss it with their neighbors, and then revote on the same question, the percentage of correct answers typically increases. This outcome could result from gains in understanding during discussion, or simply from peer influence of knowledgeable students on their neighbors. To distinguish between these alternatives in an undergraduate genetics course, we followed the above exercise with a second, similar (isomorphic) question on the same concept that students answered individually. Our results indicate that peer discussion enhances understanding, even when none of the students in a discussion group originally knows the correct answer.
Germ cells are distinct from somatic cells in their immortality, totipotency, and ability to undergo meiosis. Candidates for components that guide the unique germline program are the distinctive granules observed in germ cells of many species. We show that a component of germ granules is essential for fertility in C. elegans and that its primary function is in germline proliferation. This role has been revealed by molecular and genetic analyses of pgl-1. PGL-1 is a predicted RNA-binding protein that is present on germ granules at all stages of development. Elimination of PGL-1 results in defective germ granules and sterility. Interestingly, PGL-1 function is required for fertility only at elevated temperatures, suggesting that germline development is inherently sensitive to temperature.
Germ-line granules in C. elegans embryos (P granules) can be visualized by immunofluorescence microscopy using a monoclonal antibody. In mutant zygotes with abnormal spindle orientations and in wild-type zygotes treated with the microtubule inhibitors nocodazole, colcemid, vinblastine, and griseofulvin, both P-granule segregation to the posterior pole and the concomitant pseudocleavage occur apparently normally, but the normally concurrent migration of the pronuclei is inhibited. Conversely, treatment of wild-type embryos with the microfilament inhibitors cytochalasins D and B inhibits P-granule segregation and pseudocleavage, as well as other manifestations of polarity, without preventing pronuclear migration. The results suggest that P-granule segregation does not require either the spindle or cytoplasmic microtubules, but that this process as well as generation of other asymmetries does require cytoskeletal functions that depend on microfilaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.