The (19)F isotope is 100% naturally abundant and is the second most sensitive and stable NMR-active nucleus. Unlike the ubiquitous hydrogen atom, fluorine is nearly absent in biological systems, making it a unique bioorthogonal atom for probing molecular interactions in biology. Over 73 fluorinated proteins have been studied by (19)F NMR since the seminal studies of Hull and Sykes in 1974. With advances in cryoprobe production and fluorinated amino acid incorporation strategies, protein-based (19)F NMR offers opportunities to the medicinal chemist for characterizing and ultimately discovering new small molecule protein ligands. This review will highlight new advances using (19)F NMR for characterizing small molecule interactions with both small and large proteins as well as detailing NMR resonance assignment challenges and amino acid incorporation approaches.
As regulators of transcription, epigenetic proteins that interpret post-translational modifications to N-terminal histone tails are essential for maintaining cellular homeostasis. When dysregulated, “reader” proteins become drivers of disease. In the case of bromodomains, which recognize N-ε-acetylated lysine, selective inhibition of individual bromodomain-and-extra-terminal (BET)-family bromodomains has proven challenging. We describe the >55-fold N-terminal-BET bromodomain selectivity of 1,4,5-trisubstitutedimidazole dual kinase−bromodomain inhibitors. Selectivity for the BRD4 N-terminal bromodomain (BRD4(1)) over its second bromodomain (BRD4(2)) arises from the displacement of ordered waters and the conformational flexibility of lysine-141 in BRD4(1). Cellular efficacy was demonstrated via reduction of c-Myc expression, inhibition of NF-κB signaling, and suppression of IL-8 production through potential synergistic inhibition of BRD4(1) and p38α. These dual inhibitors provide a new scaffold for domain-selective inhibition of BRD4, the aberrant function of which plays a key role in cancer and inflammatory signaling.
Bromodomain-containing protein dysregulation is linked to cancer, diabetes, and inflammation. Selective inhibition of bromodomain function is a newly proposed therapeutic strategy. We describe a 19F NMR dual screening method for small molecule discovery using fluorinated tryptophan resonances on two bromodomain-containing proteins. The chemical shift dispersion of 19F resonances within fluorine-labeled proteins enables the simultaneous analysis of two fluorinated bromodomains by NMR. A library of 229 small molecules was screened against the first bromodomain of Brd4 and the BPTF bromodomain. We report the first small molecule selective for BPTF over Brd4, termed AU1. The Kd = 2.8 μM for AU1 which is active in a cell-based reporter assay. No binding is detected with Brd4. Three new Brd4 inhibitors with submicromolar affinity were also discovered. Brd4 hits were validated in a thermal stability assay and potency determined via fluorescence anisotropy. The speed, ease of interpretation, and low protein concentration needed for protein-observed 19F NMR experiments in a multi-protein format, offers a new method to discover and characterize selective ligands for bromodomain-containing proteins.
NMR spectroscopy can be used to quantify the binding affinity between proteins and low-complexity molecules, termed 'fragments'; this versatile screening approach allows researchers to assess the druggability of new protein targets. Protein-observed (19)F-NMR (PrOF NMR) using (19)F-labeled amino acids generates relatively simple spectra that are able to provide dynamic structural information toward understanding protein folding and function. Changes in these spectra upon the addition of fragment molecules can be observed and quantified. This protocol describes the sequence-selective labeling of three proteins (the first bromodomains of Brd4 and BrdT, and the KIX domain of the CREB-binding protein) using commercially available fluorinated aromatic amino acids and fluorinated precursors as example applications of the method developed by our research group. Fragment-screening approaches are discussed, as well as Kd determination, ligand-efficiency calculations and druggability assessment, i.e., the ability to target these proteins using small-molecule ligands. Experiment times on the order of a few minutes and the simplicity of the NMR spectra obtained make this approach well-suited to the investigation of small- to medium-sized proteins, as well as the screening of multiple proteins in the same experiment.
Oxygen homeostasis is important in the regulation of biological function. Disease progression can be monitored by measuring oxygen levels, thus producing information for the design of therapeutic treatments. Non-invasive measurements of tissue oxygenation require the development of tools with minimal adverse effects and facile detection of features of interest. Fluorine magnetic resonance imaging (19F-MRI) exploits the intrinsic properties of perfluorocarbon (PFC) liquids for anatomical imaging, cell tracking, and oxygen sensing. However, the highly hydrophobic and lipophobic properties of perfluorocarbons require the formation of emulsions for biological studies. Though, stabilizing these emulsions has been challenging. To enhance the stability and biological loading of perfluorocarbons, one option is to incorporate perfluorocarbon liquids into the internal space of biocompatible mesoporous silica nanoparticles. Here, we developed perfluorocarbon-loaded ultraporous mesostructured silica nanoparticles (PERFUMNs) as 19F-MRI detectable oxygen sensing probes. Ultraporous mesostructured nanoparticles (UMNs) have large internal cavities (average = 1.76 cm3 g−1), facilitating an average 17% loading efficiency of PFCs, meeting the threshold fluorine concentrations needed for imaging studies. Perfluoro-15-crown-5-ether PERFUMNs have the highest equivalent nuclei per PFC molecule, and a spin-lattice (T1) relaxation-based oxygen sensitivity of 0.0032 mmHg−1 s−1 at 16.4 T (657 MHz). The option of loading PFCs after synthesizing UMNs, rather than the more traditional in situ core-shell syntheses, allows for use of a broad range of PFC liquids from a single material. The biocompatible and tunable chemistry of UMNs combined with the intrinsic properties of PFCs makes PERFUMNs a MRI sensor with potential for anatomical imaging, cell tracking, and metabolic spectroscopy with improved stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.