This work presents an ensemble-based workflow to simultaneously assimilate multiple types of field data in a proper and consistent manner. The aim of using multiple field datasets is to improve the reliability of estimated reservoir models and avoid the underestimation of uncertainties. The proposed framework is based on an integrated history matching workflow, in which reservoir models are conditioned simultaneously on production, tracer and 4D seismic data with the help of three advanced techniques: adaptive localization (for better uncertainty quantification), weight adjustment (for balancing the influence of different types of field data), and sparse data representation (for handling big datasets). The integrated workflow is successfully implemented and tested in a 3D benchmark case with a set of comparison studies (with and without tracer data). The findings of this study indicate that joint history matching using production, tracer and 4D seismic data results in better estimated reservoir models and improved forecast performance. Moreover, the integrated workflow is flexible, and can be extended to incorporate more types of field data for further performance improvement. As such, the findings of this study can help to achieve a better understanding of the impacts of multiple datasets on history matching performance, and the proposed integrated workflow could serve as a useful tool for real field case studies in general.
This work investigates an ensemble-based workflow to simultaneously handle generic, nonlinear equality and inequality constraints in reservoir data assimilation problems. The proposed workflow is built upon a recently proposed umbrella algorithm, called the generalized iterative ensemble smoother (GIES), and inherits the benefits of ensemble-based data assimilation algorithms in geoscience applications. Unlike the traditional ensemble assimilation algorithms, the proposed workflow admits cost functions beyond the form of nonlinear-least-squares, and has the potential to develop an infinite number of constrained assimilation algorithms. In the proposed workflow, we treat data assimilation with constraints as a constrained optimization problem. Instead of relying on a general-purpose numerical optimization algorithm to solve the constrained optimization problem, we derive an (approximate) closed form to iteratively update model variables, but without the need to explicitly linearize the constraint systems. The established model update formula bears similarities to that of an iterative ensemble smoother (IES). Therefore, in terms of theoretical analysis, it becomes relatively easy to transit from an ordinary IES to the proposed constrained assimilation algorithms, and in terms of practical implementation, it is also relatively straightforward to implement the proposed workflow for users who are familiar with the IES, or other conventional ensemble data assimilation algorithms like the ensemble Kalman filter (EnKF). Apart from the aforementioned features, we also develop efficient methods to handle two noticed issues that would be of practical importance for ensemble-based constrained assimilation algorithms. These issues include localization in the presence of constraints, and the (possible) high dimensionality induced by the constraint systems. We use one 2D and one 3D case studies to demonstrate the performance of the proposed workflow. In particular, the 3D example contains experiment settings close to those of real field case studies. In both case studies, the proposed workflow achieves better data assimilation performance in comparison to the choice of using an original IES algorithm. As such, the proposed workflow has the potential to further improve the efficacy of ensemble-based data assimilation in practical reservoir data assimilation problems.
Reservoir models are often subject to uncertainties, which, if not properly taken into account, may introduce biases to the subsequent reservoir management process. To improve reliability and reduce uncertainties, it is crucial to condition reservoir models on available field datasets through history matching. There are different types of field data. Among others, production data are the most common choice, but they are subject to a major limitation of carrying relatively low value of information. On the other hand, inter-well tracer data have been shown to provide additional information about well-to-well connectivity and reservoir dynamics. However, jointly history matching production and inter-well tracer data still remains challenging due to the lack of a coherent quantitative workflow to fully integrate them. This work can be considered a step towards tackling this noticed problem. To this end, we propose a non-intrusive and derivative-free ensemble history matching workflow, in which reservoir models are more coherently conditioned on both production and inter-well tracer data with the help of a recently developed technique (adaptive localization). The workflow is successfully implemented in the Brugge benchmark case. Our study indicates that the history matching algorithm matches the production data well, regardless of the presence or absence of the tracer data. Nevertheless, by including tracer data as an additional source of information, we are able to improve the quality of the estimated reservoir models, in terms of both improved data match and reduced model discrepancies. Furthermore, we show that the proposed workflow is robust and provides a reasonably good way of uncertainty quantification. In summary, with the help of the adaptive localization scheme, we are able to address the issues of proper uncertainty quantification, and more coherent utilization of different types of field datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.