How chemotherapy affects carcinoma genomes is largely unknown. Here we report whole-exome and deep sequencing of 30 paired oesophageal adenocarcinomas sampled before and after neo-adjuvant chemotherapy. Most, but not all, good responders pass through genetic bottlenecks, a feature associated with higher mutation burden pre-treatment. Some poor responders pass through bottlenecks, but re-grow by the time of surgical resection, suggesting a missed therapeutic opportunity. Cancers often show major changes in driver mutation presence or frequency after treatment, owing to outgrowth persistence or loss of sub-clones, copy number changes, polyclonality and/or spatial genetic heterogeneity. Post-therapy mutation spectrum shifts are also common, particularly C>A and TT>CT changes in good responders or bottleneckers. Post-treatment samples may also acquire mutations in known cancer driver genes (for example, SF3B1, TAF1 and CCND2) that are absent from the paired pre-treatment sample. Neo-adjuvant chemotherapy can rapidly and profoundly affect the oesophageal adenocarcinoma genome. Monitoring molecular changes during treatment may be clinically useful.
Evolutionary theories are themselves subject to evolution. Clonal evolution -the model that describes the initiation and progression of cancer -is entering a period of profound change, brought about largely by technological developments in genome analysis. A flurry of recent publications, using modern mathematical and bioinformatics techniques, have revealed both punctuated and neutral evolution phenomena that are poorly explained by the conventional graduated perspectives. In this review, we propose that a hybrid model, inspired by the evolutionary model of punctuated equilibrium, could better explain these recent observations. We also discuss the conceptual changes and clinical implications of variable evolutionary tempos.
Progressive supranuclear palsy (PSP) is the most common atypical parkinsonian disorder. Abnormal tau inclusions, in selected regions of the brain, are a hallmark of the disease and the H1 haplotype of MAPT, the gene encoding tau, is the major risk factor in PSP. A 3-repeat and 4-repeat tau isoform ratio imbalance has been strongly implicated as a cause of disease. Thus, understanding tau isoform regional expression in disease and pathology-free states is crucial to elucidating mechanisms involved in PSP and other tauopathies. We used a tau-isoform specific fluorescent assay to investigate relative 4R-tau expression in 6 different brain regions in PSP cases and healthy controls. We identified marked difference in 4R-tau relative expression, both across brain regions and between MAPT haplotypes. Highest 4R-tau expression levels were identified in the globus pallidus as compared to pons, cerebellum and frontal cortex. 4R-tau expression levels were related to both the MAPT H1 and H1c haplotypes. Similar regional variation was seen in both PSP cases and controls.
Cancer evolution is driven by the acquisition of somatic mutations that provide cells with a beneficial phenotype in a changing microenvironment. However, mutations that give rise to neoantigens, novel cancer-specific peptides that elicit an immune response, are likely to be disadvantageous. Here we show how the clonal structure and immunogenotype of growing tumours is shaped by negative selection in response to neoantigenic mutations. We construct a mathematical model of neoantigen evolution in a growing tumour, and verify the model using genomic sequencing data. The model predicts that, in the absence of active immune escape mechanisms, tumours either evolve clonal neoantigens (antigen-'hot'), or have no clonally-expanded neoantigens at all (antigen-'cold'), whereas antigen-'warm' tumours (with high frequency subclonal neoantigens) form only following the evolution of immune evasion. Counterintuitively, strong negative selection for neoantigens during tumour formation leads to an increased number of antigen-warm or -hot tumours, as a consequence of selective pressure for immune escape. Further, we show that the clone size distribution under negative selection is effectively-neutral, and moreover, that stronger negative selection paradoxically leads to more neutral-like dynamics. Analysis of antigen clone sizes and immune escape in colorectal cancer exome sequencing data confirms these results.Overall, we provide and verify a mathematical framework to understand the evolutionary dynamics and clonality of neoantigens in human cancers that may inform patientspecific immunotherapy decision-making.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.