BACKGROUND Sativex®, a cannabis extract oromucosal spray containing Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), is currently in phase III trials as an adjunct to opioids for cancer pain treatment, and recently received United Kingdom approval for treatment of spasticity. There are indications that CBD modulates THC’s effects, but it is unclear if this is due to a pharmacokinetic and/or pharmacodynamic interaction. METHODS Cannabis smokers provided written informed consent to participate in this randomized, controlled, double-blind, double-dummy institutional review board–approved study. Participants received 5 and 15 mg synthetic oral THC, low-dose (5.4 mg THC and 5.0 mg CBD) and high-dose (16.2 mg THC and 15.0 mg CBD) Sativex, and placebo over 5 sessions. CBD, THC, 11-hydroxy-THC, and 11-nor-9-carboxy-THC were quantified in plasma by 2-dimensional GC-MS. Lower limits of quantification were ≤0.25 μg/L. RESULTS Nine cannabis smokers completed all 5 dosing sessions. Significant differences (P < 0.05) in maximum plasma concentrations (Cmax) and areas under the curve from 0–10.5 h postdose (AUC0→10.5) for all analytes were found between low and high doses of synthetic THC and Sativex. There were no statistically significant differences in Cmax, time to maximum concentration or in the AUC0→10.5 between similar oral THC and Sativex doses. Relative bioavailability was calculated to determine the relative rate and extent of THC absorption; 5 and 15 mg oral THC bioavailability was 92.6% (13.1%) and 98.8% (11.0%) of low- and high-dose Sativex, respectively. CONCLUSION These data suggest that CBD modulation of THC’s effects is not due to a pharmacokinetic interaction at these therapeutic doses.
Buprenorphine is a potent opioid analgesic used in the treatment of moderate to severe pain. At higher doses, it has demonstrated potential for treating heroin dependence. This study was undertaken to investigate buprenorphine pharmacokinetics by different routes of administration at dosages approximating those used in opioid-dependence studies. Six healthy men who were nondependent but who had a history of heroin use were administered buprenorphine in a crossover design study by intravenous (1.2 mg), sublingual (4.0 mg), and buccal (4.0 mg) routes of administration. Plasma samples were collected up to 96 h and assayed for buprenorphine and norbuprenorphine by negative chemical ionization tandem mass spectrometry. Plasma concentrations of buprenorphine and norbuprenorphine were analyzed by nonlinear regression analysis with standard noncompartmental methods. Buprenorphine biovailability by the sublingual and buccal routes was estimated as 51.4% and 27.8%, respectively, although there was considerable interindividual variability by both routes of administration. The terminal elimination half-lives were longer for the sublingual and buccal routes than for the intravenous route. The extended elimination half-lives may be due to a shallow depot effect involving sequestration of buprenorphine in the oral mucosa. Norbuprenorphine mean peak plasma concentrations were less than 1 ng/mL and were highly variable among different routes of administration and individuals. The terminal elimination half-life of norbuprenorphine was longer than buprenorphine.
Although a variety of drugs have been detected in sweat, little information is available on the characteristics of drug excretion in sweat under controlled-dosing conditions. A series of clinical studies were designed to determine the identity, concentration, time course, dose dependency, and variability of drug and metabolite excretion in sweat following administration of single doses of cocaine and heroin to human subjects. Sweat was collected by means of a sweat patch that could be worn for a period of several days to several weeks at a time, resulting in accumulation of drug in the patch. Sweat patches were removed at specified times and frozen until analyzed by gas chromatography--mass spectrometry. Cocaine and heroin were the major analytes excreted in sweat following their administration. Smaller amounts of cocaine metabolites were also detected following cocaine administration. 6-Acetylmorphine appeared rapidly after heroin administration and continued to increase while heroin content decreased, suggesting that heroin was undergoing hydrolysis in the sweat patch. Cocaine appeared in sweat within 1-2 hours and peaked within 24 hours in an apparent dose-dependent manner. Analysis of duplicate adjacent patches from individual subjects who had been administered cocaine provided similar quantitative results, suggesting that intrasubject variability was relatively low, whereas intersubject variability was high. These observations regarding the excretion of cocaine and heroin analytes in sweat have important forensic implications to other fields such as hair analysis. Sweat excretion could be an important mechanism by which drugs enter hair. These data also suggest that the sweat patch could serve as a useful monitoring device in surveillance of individuals in treatment and probation programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.