Developments in forensic mass spectrometry tend to follow, rather than lead, the developments in other disciplines. Examples of techniques having forensic potential born independently of forensic applications include ambient ionization, imaging mass spectrometry, isotope ratio mass spectrometry, portable mass spectrometers, and hyphenated chromatography-mass spectrometry instruments, to name a few. Forensic science has the potential to benefit enormously from developments that are funded by other means, if only the infrastructure and personnel existed to adopt, validate, and implement the new technologies into casework. Perhaps one unique area in which forensic science is at the cutting edge is in the area of chemometrics and the determination of likelihood ratios for the evaluation of the weight of evidence. Such statistical techniques have been developed most extensively for ignitable-liquid residue analyses and isotope ratio analysis. This review attempts to capture the trends, motivating forces, and likely impact of developing areas of forensic mass spectrometry, with the caveat that none of this research is likely to have any real impact in the forensic community unless: (a) The instruments developed are turned into robust black boxes with red and green lights for positives and negatives, respectively, or (b) there are PhD graduates in the workforce who can help adopt these sophisticated techniques.
The use of atomic force microscopy controlled nanothermal analysis probes for reproducible spatially resolved thermally assisted sampling of micrometer-sized areas (ca. 11 × 17 μm wide × 2.4 μm deep) from relatively low number-average molecular weight (M < 3000) polydisperse thin films of poly(2-vinylpyridine) (P2VP) is presented. Following sampling, the nanothermal analysis probes were moved up from the surface and the probe temperature ramped to liberate the sampled materials into the gas phase for atmospheric pressure chemical ionization and mass spectrometric analysis. The procedure and mechanism for material pickup, the sampling reproducibility and sampling size are discussed, and the oligomer distribution information available from slow temperature ramps versus ballistic temperature jumps is presented. For the M = 970 P2VP, the M and polydispersity index determined from the mass spectrometric data were in line with both the label values from the sample supplier and the value calculated from the simple infusion of a solution of polymer into the commercial atmospheric pressure chemical ionization source on this mass spectrometer. With a P2VP sample of higher M (M = 2070 and 2970), intact oligomers were still observed (as high as m/z 2793 corresponding to the 26-mer), but a significant abundance of thermolysis products were also observed. In addition, the capability for confident identification of the individual oligomers by slowly ramping the probe temperature and collecting data-dependent tandem mass spectra was also demonstrated. The material type limits to the current sampling and analysis approach as well as possible improvements in nanothermal analysis probe design to enable smaller area sampling and to enable controlled temperature ramps beyond the present upper limit of about 415 °C are also discussed.
Electrochemically deposited electroactive polymer (EAP) films were investigated for their potential to enhance the performance of ambient ionization mass spectrometry (MS). Several EAPs of varying hydrophobicity were evaluated, including the superhydrophobic polymer poly[3,4-(2-dodecylethylenedioxy)thiophene] (PEDOT-C12). The EAPs were electropolymerized onto indium tin oxide-coated glass, placed in front of the inlet of a mass spectrometer, and charged to 3.5–4.5 kV. Analyte solutions were then applied to the surface, initiating ionization events. Analytes including peptides and small molecule pharmaceuticals were studied in 0.1% formic acid in methanol/water (“spray solvent”) as well as in synthetic biological fluid matrices, using both EAP spray ionization (EAPSI) and paper spray ionization (PSI). Each EAPSI analysis required as little as 0.1 μL of solution, and the resulting sprays were stable and reproducible. The sensitivity, limit of detection (LOD), and limit of quantification (LOQ) were evaluated using bradykinin, cannabinol, and cannabidiol, which were prepared in pure solvents, artificial urine, and artificial saliva. The limits of detection and quantitation for EAPSI were improved relative to PSI by 1–2 orders of magnitude for analytes prepared in methanol/water and on the same order of magnitude as PSI for analytes prepared in artificial saliva and urine. This EAP-based spray ionization technique offers possibilities for rapid MS analysis with small sample sizes, high accuracy, and miniaturization of MS instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.