Rapid underwater bonding of clear polycarbonate to metal or plastic substrates at temperatures approaching 0 ºC was studied. Bonding was achieved within minutes using ethyl 2-cyanoacrylate gel cured using the photoinitiator (dibenzoylferrocene) with a blue-LED light source. The optimum initiator concentration varied from 0.3% to 0.1 wt % for adhesive films 0.5 to 1.2 mm thick respectively. The polymerisation rate shows a negative temperature dependence making it highly suitable for cold environments. The ultimate shear strength of the bonds was temperature independent and ranged from 1 MPa for metallic to 5 MPa for plastic substrates respectively.
The energetics of cast calcium sulfate dihydrate-aluminum thermites were investigated. The casts were prepared from water slurries with a solids content below 65 wt %. The base case thermite comprised 60 wt % calcium sulfate dihydrate as the oxidizer with 40 wt % aluminum as fuel. The heat of hydration of the base case was 83 ± 4 kJ·kg (dihydrate basis) and the initial setting time was about 100 min. The compressive strength reached 2.9 ± 0.2 MPa after 3 days of drying in ambient air. The open air burn rate was 12.0 ± 1.6 mm· s and a maximum surface temperature of 1370 ± 64 °C was recorded with a pyrometer. Bomb calorimetry indicated an energy output of 8.0 ± 1.1 MJ·kg, slightly lower than predicted by the Ekvi thermodynamic simulation. Substitution of 10 wt % of the oxidant with copper sulfate pentahydrate significantly decreased the initial setting time of the casts to less than 30 min but a secondary aluminum oxidation reaction commenced after 2 h. The density of the castings was varied by either adding hollow sodium borosilicate microspheres or by adding excess water during the casting process. The addition of the hollow glass microspheres caused a decrease in the burning rate. Dehydration of the casts by thermal treatments at either 155 or 200 °C led to significant increases in the burning rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.