During neurotransmitter release at the synapse, influx of calcium ions stimulates the release of neurotransmitter. However, the mechanism by which synaptic vesicle fusion is coupled to calcium has been unclear, despite the identification of both the core fusion machinery [soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)] and the principal calcium sensor (synaptotagmin). Here, we describe what may represent a basic principle of the coupling mechanism: a reversible clamping protein (complexin) that can freeze the SNAREpin, an assembled fusion-competent intermediate en route to fusion. When calcium binds to the calcium sensor synaptotagmin, the clamp would then be released. SNARE proteins, and key regulators like synaptotagmin and complexin, can be ectopically expressed on the cell surface. Cells expressing such "flipped" synaptic SNAREs fuse constitutively, but when we coexpressed complexin, fusion was blocked. Adding back calcium triggered fusion from this intermediate in the presence of synaptotagmin.
Membrane fusion occurs when SNAREpins fold up between lipid bilayers. How much energy is generated during SNAREpin folding and how this energy is coupled to the fusion of apposing membranes is unknown. We have used a surface forces apparatus to determine the energetics and dynamics of SNAREpin formation and characterize the different intermediate structures sampled by cognate SNAREs in the course of their assembly. The interaction energy-versus-distance profiles of assembling SNAREpins reveal that SNARE motifs begin to interact when the membranes are 8 nm apart. Even after very close approach of the bilayers (approximately 2-4 nm), the SNAREpins remain partly unstructured in their membrane-proximal region. The energy stabilizing a single SNAREpin in this configuration (35 k(B)T) corresponds closely with the energy needed to fuse outer but not inner leaflets (hemifusion) of pure lipid bilayers (40-50 k(B)T).
Microvesicles (exosomes) are important mediators of intercellular communication, playing a role in immune regulation, cancer progression and the spread of infectious agents. The biological functions of these small vesicles are dependent upon their composition, which is regulated by mechanisms that are not well understood. Although numerous proteomic studies of these particles exist, little is known about their glycosylation. Carbohydrates are involved in protein trafficking and cellular recognition. Glycomic analysis may thus provide valuable insights into microvesicle biology. In this study, we analyzed glycosylation patterns of microvesicles derived from a variety of biological sources using lectin microarray technology. Comparison of the microvesicle glycomes with their parent cell membranes revealed both enrichment and depletion of specific glycan epitopes in these particles. These include enrichment in high mannose, polylactosamine, α-2,6 sialic acid, and complex N-linked glycans and exclusion of terminal blood group A and B antigens. The polylactosamine signature derives from distinct glycoprotein cohorts in microvesicles of different origins. Taken together our data point to the emergence of microvesicles from a specific membrane microdomain, implying a role for glycosylation in microvesicle protein sorting.
Membrane fusion between vesicles and target membranes involves the zippering of a four-helix bundle generated by constituent helices derived from t- and v-SNAREs found on the target and vesicular membranes. In neurons the protein complexin clamps otherwise spontaneous fusion by SNARE proteins, allowing neurotransmitters and other mediators to be secreted when and where they are needed as this clamp is released. The membrane-proximal accessory helix of complexin is necessary for clamping, but its mechanism of action is unknown. Here, we present experiments using a reconstituted fusion system that suggest a simple model in which the complexin accessory helix forms an alternative four-helix bundle with the t-SNARE near the membrane, preventing the v-SNARE from completing its zippering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.